THE EFFECT OF BOWING ON LOCAL HEAT TRANSFER RATES FROM RIB-ROUGHENED FUEL ELEMENTS

Author(s):  
F.P. Berger ◽  
A. Ziai
1993 ◽  
Vol 17 (2) ◽  
pp. 145-160
Author(s):  
P.H. Oosthuizen ◽  
A. Sheriff

Indirect passive solar crop dryers have the potential to considerably reduce the losses that presently occur during drying of some crops in many parts of the “developing” world. The performance so far achieved with such dryers has, however, not proved to be very satisfactory. If this performance is to be improved it is necessary to have an accurate computer model of such dryers to assist in their design. An important element is any dryer model is an accurate equation for the convective heat transfer in the collector. To assist in the development of such an equation, an experimental and numerical study of the collector heat transfer has been undertaken. In the experimental study, the collector was simulated by a 1m long by 1m wide channel with a gap of 4 cm between the upper and lower surfaces. The lower surface of the channel consisted of an aluminium plate with an electrical heating element, simulating the solar heating, bonded to its lower surface. Air was blown through this channel at a measured rate and the temperature profiles at various points along the channel were measured using a shielded thermocouple probe. Local heat transfer rates were then determined from these measured temperature profiles. In the numerical study, the parabolic forms of the governing equations were solved by a forward-marching finite difference procedure.


1967 ◽  
Vol 89 (2) ◽  
pp. 163-167 ◽  
Author(s):  
E. G. Filetti ◽  
W. M. Kays

Experimental data are presented for local heat transfer rates near the entrance to a flat duct in which there is an abrupt symmetrical enlargement in flow cross section. Two enlargement area ratios are considered, and Reynolds numbers, based on duct hydraulic diameter, varied from 70,000 to 205,000. It is found that such a flow is characterized by a long stall on one side and a short stall on the other. Maximum heat transfer occurs in both cases at the point of reattachment, followed by a decay toward the values for fully developed duct flow. Empirical equations are given for the Nusselt number at the reattachment point, correlated as functions of duct Reynolds number and enlargement ratio.


1993 ◽  
Vol 115 (3) ◽  
pp. 560-567 ◽  
Author(s):  
N. Zhang ◽  
J. Chiou ◽  
S. Fann ◽  
W.-J. Yang

Experiments are performed to determine the local heat transfer performance in a rotating serpentine passage with rib-roughened surfaces. The ribs are placed on the trailing and leading walls in a corresponding posited arrangement with an angle of attack of 90 deg. The rib height-to-hydraulic diameter ratio, e/Dh, is 0.0787 and the rib pitch-to-height ratio, s/e, is 11. The throughflow Reynolds number is varied, typically at 23,000, 47,000, and 70,000 in the passage both at rest and in rotation. In the rotation cases, the rotation number is varied from 0.023 to 0.0594. Results for the rib-roughened serpentine passages are compared with those of smooth ones in the literature. Comparison is also made on results for the rib-roughened passages between the stationary and rotating cases. It is disclosed that a significant enhancement is achieved in the heat transfer in both the stationary and rotating cases resulting from an installation of the ribs. Both the rotation and Rayleigh numbers play important roles in the heat transfer performance on both the trailing and leading walls. Although the Reynolds number strongly influences the Nusselt numbers in the rib-roughened passage of both the stationary and rotating cases, Nuo and Nu, respectively, it has little effect on their ratio Nu/Nuo.


1997 ◽  
Vol 119 (3) ◽  
pp. 610-616 ◽  
Author(s):  
S. Mochizuki ◽  
A. Murata ◽  
M. Fukunaga

The objective of this study was to investigate, through experiments, the combined effects of a sharp 180 deg turn and rib patterns on the pressure drop performance and distributions of the local heat transfer coefficient in an entire two-pass rib-roughened channel with a 180 deg turn. The rib pitch-to-equivalent diameter ratio P/de was 1.0, the rib-height-to-equivalent diameter ratio e/de was 0.09, and the rib angle relative to the main flow direction was varied from 30 ∼ 90 deg with an interval of 15 deg. Experiments were conducted for Reynolds numbers in the range 4000 ∼ 30,000. It was disclosed that, due to the interactions between the bend-induced secondary flow and the rib-induced secondary flow, the combination of rib patterns in the channel before and after the turn causes considerable differences in the pressure drop and heat transfer performance of the entire channel.


1992 ◽  
Vol 114 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B. W. Webb ◽  
T. L. Bergman

Natural convection in an enclosure with a uniform heat flux on two vertical surfaces and constant temperature at the adjoining walls has been investigated both experimentally and theoretically. The thermal boundary conditions and enclosure geometry render the buoyancy-induced flow and heat transfer inherently three dimensional. The experimental measurements include temperature distributions of the isoflux walls obtained using an infrared thermal imaging technique, while the three-dimensional equations governing conservation of mass, momentum, and energy were solved using a control volume-based finite difference scheme. Measurements and predictions are in good agreement and the model predictions reveal strongly three-dimensional flow in the enclosure, as well as high local heat transfer rates at the edges of the isoflux wall. Predicted average heat transfer rates were correlated over a range of the relevant dimensionless parameters.


2006 ◽  
Vol 129 (2) ◽  
pp. 188-199 ◽  
Author(s):  
Shyy Woei Chang ◽  
Tong-Minn Liou ◽  
Jui-Hung Hung ◽  
Wen-Hsien Yeh

This paper describes an experimental study of heat transfer in a radially rotating square duct with two opposite walls roughened by 45deg staggered ribs. Air coolant flows radially outward in the test channel with experiments to be undertaken that match the actual engine conditions. Laboratory-scale heat transfer measurements along centerlines of two rib-roughened surfaces are performed with Reynolds number (Re), rotation number (Ro), and density ratio (Δρ∕ρ) in the ranges of 7500–15,000, 0–1.8, and 0.076–0.294. The experimental rig permits the heat transfer study with the rotation number considerably higher than those studied in other researches to date. The rotational influences on cooling performance of the rib-roughened channel due to Coriolis forces and rotating buoyancy are studied. A selection of experimental data illustrates the individual and interactive impacts of Re, Ro, and buoyancy number on local heat transfer. A number of experimental-based observations reveal that the Coriolis force and rotating buoyancy interact to modify heat transfer even if the rib induced secondary flows persist in the rotating channel. Local heat transfer ratios between rotating and static channels along the centerlines of stable and unstable rib-roughened surfaces with Ro varying from 0.1 to 1.8 are in the ranges of 0.6–1.6 and 1–2.2, respectively. Empirical correlations for periodic flow regions are developed to permit the evaluation of interactive and individual effects of ribflows, convective inertial force, Coriolis force, and rotating buoyancy on heat transfer.


2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


Author(s):  
Shyy Woei Chang ◽  
Tong-Minn Liou ◽  
Wen-Hsien Yeh ◽  
Jui-Hung Hung

This paper describes an experimental study of heat transfer in a radially rotating square duct with two opposite walls roughened by 45° staggered ribs. Air coolant flows radially outward in the test channel with experiments to be undertaken that match the actual engine conditions. Laboratory-scale heat transfer measurements along centerlines of two rib-roughened surfaces are performed with Reynolds number (Re), rotation number (Ro) and density ratio (Δρ/ρ) in the ranges of 7500–15000, 0–1.8 and 0.076–0.294. The experimental rig permits the heat transfer study with the rotation number considerably higher than those studied in other researches to date. The rotational influences on cooling performance of the rib-roughened channel due to Coriolis forces and rotating buoyancy are studied. A selection of experimental data illustrates the individual and interactive impacts of Re, Ro and buoyancy number on local heat transfer. A number of experimental-based observations reveal that the Coriolis force and rotating buoyancy interact to modify heat transfer even if the rib induced secondary flows persist in the rotating channel. Local heat transfer ratios between rotating and static channels along the centerlines of stable and unstable rib-roughened surfaces with Ro varying from 0.1 to 1.8 are in the ranges of 0.6–1.6 and 1–2.2 respectively. Empirical correlations for periodic flow regions are developed to permit the evaluation of interactive and individual effects of rib-flows, convective inertial force, Coriolis force and rotating buoyancy on heat transfer.


Sign in / Sign up

Export Citation Format

Share Document