Response of Terrestrial Ecosystems to Elevated CO2: A Synthesis and Summary

Author(s):  
George W. Koch ◽  
Harold A. Mooney
CATENA ◽  
2021 ◽  
Vol 201 ◽  
pp. 105219
Author(s):  
Cuiting Wang ◽  
Yuan Sun ◽  
Han Y.H. Chen ◽  
Honghua Ruan

2014 ◽  
Vol 11 (6) ◽  
pp. 8749-8787 ◽  
Author(s):  
L. Keidel ◽  
C. Kammann ◽  
L. Grünhage ◽  
G. Moser ◽  
C. Müller

Abstract. Soil respiration of terrestrial ecosystems, a major component in the global carbon cycle is affected by elevated atmospheric CO2 concentrations. However, seasonal differences of feedback effects of elevated CO2 have rarely been studied. At the Giessen Free-Air CO2 Enrichment (GiFACE) site, the effects of +20% above ambient CO2 concentration (corresponds to conditions reached 2035–2045) have been investigated since 1998 in a temperate grassland ecosystem. We defined five distinct annual periods, with respect to management practices and phenological cycles. For a period of three years (2008–2010), weekly measurements of soil respiration were carried out with a survey chamber on vegetation-free subplots. The results revealed a pronounced and repeated increase of soil respiration during late autumn and winter dormancy. Increased CO2 losses during the autumn period (September–October) were 15.7% higher and during the winter period (November–March) were 17.4% higher compared to respiration from control plots. However, during spring time and summer, which are characterized by strong above- and below-ground plant growth, no significant change in soil respiration was observed at the FACE site under elevated CO2. This suggests (i) that soil respiration measurements, carried out only during the vegetative growth period under elevated CO2 may underestimate the true soil-respiratory CO2 loss (i.e. overestimate the C sequestered) and (ii) that additional C assimilated by plants during the growing period and transferred below-ground will quickly be lost via enhanced heterotrophic respiration outside the main vegetation period.


2019 ◽  
Vol 650 ◽  
pp. 697-708 ◽  
Author(s):  
Chenjun Du ◽  
Xiaodan Wang ◽  
Mengyao Zhang ◽  
Jie Jing ◽  
Yongheng Gao

2012 ◽  
Vol 9 (1) ◽  
pp. 357-386 ◽  
Author(s):  
W. M. A. Sillen ◽  
W. I. J. Dieleman

Abstract. Elevated atmospheric CO2 levels and increasing nitrogen deposition both stimulate plant production in terrestrial ecosystems. Moreover, nitrogen deposition could alleviate an increasing nitrogen limitation experienced by plants exposed to elevated CO2 concentrations. However, an increased rate of C flux through the soil compartment as a consequence of elevated CO2 concentrations has been suggested to limit C sequestration in terrestrial ecosystems, questioning the potential for terrestrial C uptake to mitigate the increasing atmospheric CO2 concentrations. Our study used data from 69 published studies to investigate whether CO2 elevation and/or nitrogen fertilization could induce an increased carbon storage in grasslands, and considered the influence of management practices involving biomass removal or irrigation on the elevated CO2 effects. Our results confirmed a positive effect of elevated CO2 levels and nitrogen fertilization on plant growth, but revealed that N availability is essential for the increased C influx under elevated CO2 to propagate into belowground C pools. However, moderate nutrient additions also promoted decomposition processes in elevated CO2, reducing the potential for increased soil C storage. An important role in the soil carbon response to elevated CO2 was attributed to the root response, since there was a lower potential for increases in soil C content when root biomass was more responsive to CO2 elevation. Future elevated CO2 concentrations and increasing N deposition might thus increase C storage in plant biomass, but the potential for increased soil C storage is limited.


1993 ◽  
Vol 41 (1) ◽  
pp. 11 ◽  
Author(s):  
HP Possingham

Biodiversity is characteristically defined on three levels: genetic diversity, species diversity and ecosystem diversity. In this paper I consider the impact of elevated CO2 and associated climate change on the biodiversity of terrestrial systems at the species level. I attempt to understand the impact of a rapidly changing physical environment mechanistically. The direct impact of elevated CO2 is emphasised. A changing physical environment will cause behavioural and physiological responses in organisms that will affect population dynamics and interspecific relationships. In the short term, extinctions will occur via the direct interaction of species with their changing environment. Species exposed to new diseases, and species dependent on mutualists or keystone species that become extinct or change geographical range, may become extinct rapidly through interactions with other species. I hypothesise that the effect of environmental change on competitive interactions will play a minor role in causing declines in biodiversity. Existing literature on the impact of climate change on terrestrial ecosystems emphasises the way in which ecosystems and species should track suitable climates across the landscape. Here I argue that each species will be affected in one, or a combination, of the following ways: range change to track shifting climate zones, tolerating the environmental change, microevolutionary change, and extinction.


2012 ◽  
Vol 9 (6) ◽  
pp. 2247-2258 ◽  
Author(s):  
W. M. A. Sillen ◽  
W. I. J. Dieleman

Abstract. Elevated atmospheric CO2 levels and increasing nitrogen deposition both stimulate plant production in terrestrial ecosystems. Moreover, nitrogen deposition could alleviate an increasing nitrogen limitation experienced by plants exposed to elevated CO2 concentrations. However, an increased rate of C flux through the soil compartment as a consequence of elevated CO2 concentrations has been suggested to limit C sequestration in terrestrial ecosystems, questioning the potential for terrestrial C uptake to mitigate increasing atmospheric CO2 concentrations. Our study used data from 77 published studies applying elevated CO2 and/or N fertilization treatment to monitor carbon storage potential in grasslands, and considered the influence of management practices involving biomass removal or irrigation on the elevated CO2 effects. Our results confirmed a positive effect of elevated CO2 levels and nitrogen fertilization on plant growth, but revealed that N availability is essential for the increased C influx under elevated CO2 to propagate into belowground C pools. However, moderate nutrient additions also promoted decomposition processes in elevated CO2, reducing the potential for increased soil C storage. An important role was attributed to the CO2 response of root biomass in soil carbon responses to elevated CO2, since there was a lower potential for increases in soil C content when root biomass increased. Future elevated CO2 concentrations and increasing N deposition might thus increase C storage in plant biomass, but the potential for increased soil C storage is limited.


2015 ◽  
Vol 12 (4) ◽  
pp. 1257-1269 ◽  
Author(s):  
L. Keidel ◽  
C. Kammann ◽  
L. Grünhage ◽  
G. Moser ◽  
C. Müller

Abstract. Soil respiration of terrestrial ecosystems, a major component in the global carbon cycle is affected by elevated atmospheric CO2 concentrations. However, seasonal differences of feedback effects of elevated CO2 have rarely been studied. At the Gießen Free-Air CO2 Enrichment (GiFACE) site, the effects of +20% above ambient CO2 concentration have been investigated since 1998 in a temperate grassland ecosystem. We defined five distinct annual seasons, with respect to management practices and phenological cycles. For a period of 3 years (2008–2010), weekly measurements of soil respiration were carried out with a survey chamber on vegetation-free subplots. The results revealed a pronounced and repeated increase of soil respiration under elevated CO2 during late autumn and winter dormancy. Increased CO2 losses during the autumn season (September–October) were 15.7% higher and during the winter season (November–March) were 17.4% higher compared to respiration from ambient CO2 plots. However, during spring time and summer, which are characterized by strong above- and below-ground plant growth, no significant change in soil respiration was observed at the GiFACE site under elevated CO2. This suggests (1) that soil respiration measurements, carried out only during the growing season under elevated CO2 may underestimate the true soil-respiratory CO2 loss (i.e. overestimate the C sequestered), and (2) that additional C assimilated by plants during the growing season and transferred below-ground will quickly be lost via enhanced heterotrophic respiration outside the main growing season.


Sign in / Sign up

Export Citation Format

Share Document