microbial c
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 35)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Vol 165 ◽  
pp. 108515
Author(s):  
S. Marañón-Jiménez ◽  
D. Asensio ◽  
J. Sardans ◽  
P. Zuccarini ◽  
R. Ogaya ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Naiwen Zhang ◽  
Xu Chen ◽  
Xiaozeng Han ◽  
Xinchun Lu ◽  
Jun Yan ◽  
...  

Tillage and straw incorporation are important agricultural practices that can break the plow layer and improve Mollisol fertility. The effect of these practices on the limitation of resources for soil microorganisms, however, is unclear. We established a field experiment in 2018 and collection of soil samples in 2020 to study the acquisition of resources by microbes in a Mollisol region in northeastern China. Four treatments were studied: conventional tillage (CT), straw incorporation with conventional tillage (SCT), subsoil tillage (ST) and straw incorporation with subsoil tillage (SST). The limitation of resources for soil microorganisms was assessed using models of extracellular enzymatic stoichiometry. The soil microbes were generally colimited by C and P but not N. The degree of limitation, however, varied among the treatments. SCT and SST alleviated microbial P limitation in the 0–15 and 15–35 cm layers, respectively, but ST did not significantly affect P limitation relative to CT. Interestingly, N-resource contents were strongly correlated with indicators of C and P limitation. A random forest analysis found that the contents of available N and total dissolved N were the most important factors for microbial C and P limitation, respectively. Straw incorporation alleviated microbial P limitation but did not eliminate P limitation and deep tillage aggravate microbial C limitation. We suggest that N fertilization may be reduced due to the N-rich characteristics of the Mollisols in northeastern China.


2021 ◽  
Author(s):  
Zhe (Han) Weng ◽  
Lukas Van Zwieten ◽  
Michael Rose ◽  
Bhupinder Pal Singh ◽  
Ehsan Tavakkoli ◽  
...  

Abstract The soil carbon saturation concept suggests an upper limit to store soil organic carbon (SOC), set by the mechanisms that protect soil organic matter from decomposition. Biochar has the capacity to protect new C including rhizodeposits and microbial necromass. However, the decadal scale mechanisms by which biochar influences the molecular diversity, spatial heterogeneity, and temporal changes of SOC persistence remain unresolved. Here we show that the soil C saturation ceiling of a Ferralsol under subtropical pasture could be elevated by 2 Mg (new) C ha-1 by the application of Eucalyptus saligna biochar 8.2 years after the first application. Using one, two-, and three-dimensional analyses, significant increases were observed in the spatial distribution of root-derived 13C in microaggregates (53-250 µm, 11 %) and new C protected in mineral fractions (<53 µm, 5 %). Microbial C-use efficiency was concomitantly improved by lowering specific enzyme activities, contributing to the decreased mineralization of native SOC by 18 %. We provide evidence that the global SOC ceiling can be elevated using biochar in Ferralsols by 0.01-0.1 Pg new C yr-1.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1815
Author(s):  
Livia Vittori Antisari ◽  
William Trenti ◽  
Mauro De Feudis ◽  
Gianluca Bianchini ◽  
Gloria Falsone

Temperate soils are threatened by degradation and soil organic matter (SOM) loss due to a combination of geomorphology, soil types, and anthropic pressure. In 54 sites in Northern Italy, characterized by different land uses, climates, geological substrates, and soils, we assessed (i) the soil quality, (ii) the SOM accumulation/degradation patterns, and (iii) whether land use and related soil management practices are sustainable based on changes in soil quality. Soil samples from the 0–15 and 15–30 cm deep layers were collected and analyzed for the soil parameters recommended by the FAO (bulk density, pH, organic and microbial C, total N, and soil respiration rate) and for the chemical SOM pools. Parameters related to the efficient use of soil microbial C were also calculated. The findings showed that agricultural lands where organic material was added had good soil quality and used microbial C efficiently. Reclaimed peaty soils degraded because the conditions were too stressful for the soil microbial biomass as supported by high metabolic quotient and the low values of mineralization quotient, microbial quotient, and soil biofertility index. Conservative management practices carried out in chestnuts were found to have a decreased soil degradation risk. An investigation of the soil parameters recommended by the FAO can be used to evaluate sustainable practices and soil quality on microbial activity and SOM dynamics.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1591
Author(s):  
Yunqiu Wang ◽  
Muhammad Shahbaz ◽  
Mostafa Zhran ◽  
Anlei Chen ◽  
Zhenke Zhu ◽  
...  

Karst is a widespread ecosystem with properties that affect the microbial activity and storage and cycling of soil organic carbon. The mechanisms underlying microbial resource availability in karst, which limit the microbial growth and activity in soil aggregates, remain largely unknown. We assessed the microbial resource limitations using exoenzymatic stoichiometry and key extracellular enzyme activities in bulk soil and aggregates in karst and non-karst forest soils. Soil organic carbon, total nitrogen, and microbial biomass carbon and nitrogen were significantly higher in bulk soil and the aggregate fractions in karst forests. However, the microbial biomass accumulation was higher in finer aggregates than in macroaggregate fractions. This may be attributed to the surface area of finer aggregates that increase the microbial C accumulation. In karst forests, the activity of extracellular enzymes β-d-glucosidase, β-N-acetylglucosaminidase, α-glucosidase, and α-d-1,4-cellobiosidase was two to three times higher in microaggregates (0.053–0.25 mm) and mineral fractions (<0.053 mm) than in macroaggregates. This coincided with the distribution of microbial biomass carbon and phosphorus in finer aggregate fractions. The microorganisms in bulk soil and aggregates in karst forests were largely co-limited by carbon and phosphorus and rarely by nitrogen and only by phosphorus in non-karst soils. The microbial phosphorus limitation in non-karst soils was alleviated in finer soil aggregates, while these fractions reflected slightly higher. microbial C limitations than bulk and other aggregates in karst forests. The patterns of microbial resource limitations in the bulk and aggregate fractions in karst ecosystems reflected the regulation of enzyme activity and soil organic carbon accumulation in finer aggregate fractions but not in other aggregates.


2021 ◽  
Author(s):  
Maria Isabel Arce ◽  
Mia M. Bengtsson ◽  
Daniel von Schiller ◽  
Dominik Zak ◽  
Jana Täumer ◽  
...  

AbstractDroughts are recognized to impact global biogeochemical cycles. However, the implication of desiccation on in-stream carbon (C) cycling is not well understood yet. We subjected sediments from a lowland, organic rich intermittent stream to experimental desiccation over a 9-week-period to investigate temporal changes in microbial functional traits in relation to their redox requirements, carbon dioxide (CO2) and methane (CH4) fluxes and water-soluble organic carbon (WSOC). Concurrently, the implications of rewetting by simulated short rainfalls (4 and 21 mm) on gaseous C fluxes were tested. Early desiccation triggered dynamic fluxes of CO2 and CH4 with peak values of 383 and 30 mg C m−2 h−1 (mean ± SD), respectively, likely in response to enhanced aerobic mineralization and accelerated evasion. At longer desiccation, CH4 dropped abruptly, likely because of reduced abundance of anaerobic microbial traits. The CO2 fluxes ceased later, suggesting aerobic activity was constrained only by extended desiccation over time. We found that rainfall boosted fluxes of CO2, which were modulated by rainfall size and the preceding desiccation time. Desiccation also reduced the amount of WSOC and the proportion of labile compounds leaching from sediment. It remains questionable to which extent changes of the sediment C pool are influenced by respiration processes, microbial C uptake and cell lysis due to drying-rewetting cycles. We highlight that the severity of the dry period, which is controlled by its duration and the presence of precipitation events, needs detailed consideration to estimate the impact of intermittent flow on global riverine C fluxes.


Radiocarbon ◽  
2021 ◽  
pp. 1-17
Author(s):  
Yishan Jiang ◽  
Dayi Zhang ◽  
Nicholas J Ostle ◽  
Chunling Luo ◽  
Yan Wang ◽  
...  

ABSTRACT The function and change of global soil carbon (C) reserves in natural ecosystems are key regulators of future carbon-climate coupling. Microbes play a critical role in soil carbon cycling and yet there is poor understanding of their roles and C metabolism flexibility in many ecosystems. We wanted to determine whether vegetation type and climate zone influence soil microbial community composition (fungi and bacteria) and carbon resource preference. We used a biomarker (phospholipid fatty acids, PLFAs), natural abundance 13C and 14C probing approach to measure soil microbial composition and C resource use, along a 1900–4167-m elevation gradient on Mount Gongga (7556 m asl), China. Mount Gongga has a vertical mean annual temperature gradient of 1.2–10.1°C and a diversity of typical vegetation zones in the Tibetan Plateau. Soils were sampled at 10 locations along the gradient capturing distinct vegetation types and climate zones from lowland subtropical-forest to alpine-meadow. PLFA results showed that microbial communities were composed of 2.1–51.7% bacteria and 2.0–23.2% fungi across the elevation gradient. Microbial biomass was higher and the ratio of soil fungi to bacteria (F/B) was lower in forest soils compared to meadow soils. δ13C varied between −33‰ to −17‰ with C3 plant carbon sources dominant across the gradient. Soil organic carbon (SOC) turnover did not vary among three soils we measured from three forest types (i.e., evergreen broadleaved subtropical, mixed temperate, coniferous alpine) and dissolved organic carbon (DOC) turnover decreased with soil elevation. Forest soil microbial PLFA 14C and δ13C measurements showed that forest type and climate were related to different microbial C use. The 14C values of microbial PLFAs i15, a15, 16:1, br17 decreased with elevation while those of C16:0, cyC17, and cyC19 did not show much difference among three forest ecosystems. Bacteria and bacillus represented by C16:1 and brC17 showed considerable microbial C metabolism flexibility and tended to use ancient carbon at higher altitudes. Anaerobes represented by cyC17 and cyC19 showed stronger C metabolism selectivity. Our findings reveal specific C source differences between and within soil microbial groups along elevation gradients.


2021 ◽  
Author(s):  
Ilonka C. Engelhardt ◽  
Pascal A. Niklaus ◽  
Florian Bizouard ◽  
Marie-Christine Breuil ◽  
Nadine Rouard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document