Improved energy demand management in buildings for smart grids

Author(s):  
S. Kiliccote ◽  
M.A. Piette ◽  
G. Ghatikar
2021 ◽  
Vol 14 (4) ◽  
pp. 57
Author(s):  
Helios Raharison ◽  
Emilie Loup-Escande

Acting to preserve our planet as much as possible is no longer optional in today's world. To do so, Smart Grids within the framework of electrical networks - involving not only Distribution System Operators (DSOs), but also consumers in their Energy Demand Management (EDM) activity - represent an innovative and sustainable solution. However, the integration of Smart Grids into network management or into consumers' homes implies changes at several levels: organizational, social, psychological, etc. This is why it is essential to consider the human factor in the design of the technologies used in these Smart Grids. This paper proposes the integration of DSO operators and consumers within a user-centered evaluation approach in order to design Smart Grids that are sufficiently acceptable to users to enable Positive Energy Territories that produce more energy than they consume. This demonstration will be illustrated by the VERTPOM® project aiming at facilitating the use of renewable energies specific to each territory in order to contribute to the reduction of greenhouse gases and make the territories less dependent on traditional energies, and thus make Picardy (in France) a Positive Energy Territory. This paper presents the user-centered evaluation approach applied to three technologies (i.e., the VERTPOM-BANK® supervision tool intended for DSO operators, the private web portal and the IBox smart meter intended for households) from the upstream design phase to the implementation of the technologies in real-life situations.


Author(s):  
Raul J. Martinez Oviedo ◽  
Zhong Fan ◽  
Sedat Gormus ◽  
Parag Kulkarni ◽  
Dritan Kaleshi

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4649
Author(s):  
İsmail Hakkı ÇAVDAR ◽  
Vahit FERYAD

One of the basic conditions for the successful implementation of energy demand-side management (EDM) in smart grids is the monitoring of different loads with an electrical load monitoring system. Energy and sustainability concerns present a multitude of issues that can be addressed using approaches of data mining and machine learning. However, resolving such problems due to the lack of publicly available datasets is cumbersome. In this study, we first designed an efficient energy disaggregation (ED) model and evaluated it on the basis of publicly available benchmark data from the Residential Energy Disaggregation Dataset (REDD), and then we aimed to advance ED research in smart grids using the Turkey Electrical Appliances Dataset (TEAD) containing household electricity usage data. In addition, the TEAD was evaluated using the proposed ED model tested with benchmark REDD data. The Internet of things (IoT) architecture with sensors and Node-Red software installations were established to collect data in the research. In the context of smart metering, a nonintrusive load monitoring (NILM) model was designed to classify household appliances according to TEAD data. A highly accurate supervised ED is introduced, which was designed to raise awareness to customers and generate feedback by demand without the need for smart sensors. It is also cost-effective, maintainable, and easy to install, it does not require much space, and it can be trained to monitor multiple devices. We propose an efficient BERT-NILM tuned by new adaptive gradient descent with exponential long-term memory (Adax), using a deep learning (DL) architecture based on bidirectional encoder representations from transformers (BERT). In this paper, an improved training function was designed specifically for tuning of NILM neural networks. We adapted the Adax optimization technique to the ED field and learned the sequence-to-sequence patterns. With the updated training function, BERT-NILM outperformed state-of-the-art adaptive moment estimation (Adam) optimization across various metrics on REDD datasets; lastly, we evaluated the TEAD dataset using BERT-NILM training.


2020 ◽  
Vol 30 (1) ◽  
pp. 013153 ◽  
Author(s):  
Iacopo Iacopini ◽  
Benjamin Schäfer ◽  
Elsa Arcaute ◽  
Christian Beck ◽  
Vito Latora

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4154 ◽  
Author(s):  
Anthony Faustine ◽  
Lucas Pereira

The advance in energy-sensing and smart-meter technologies have motivated the use of a Non-Intrusive Load Monitoring (NILM), a data-driven technique that recognizes active end-use appliances by analyzing the data streams coming from these devices. NILM offers an electricity consumption pattern of individual loads at consumer premises, which is crucial in the design of energy efficiency and energy demand management strategies in buildings. Appliance classification, also known as load identification is an essential sub-task for identifying the type and status of an unknown load from appliance features extracted from the aggregate power signal. Most of the existing work for appliance recognition in NILM uses a single-label learning strategy which, assumes only one appliance is active at a time. This assumption ignores the fact that multiple devices can be active simultaneously and requires a perfect event detector to recognize the appliance. In this paper proposes the Convolutional Neural Network (CNN)-based multi-label learning approach, which links multiple loads to an observed aggregate current signal. Our approach applies the Fryze power theory to decompose the current features into active and non-active components and use the Euclidean distance similarity function to transform the decomposed current into an image-like representation which, is used as input to the CNN. Experimental results suggest that the proposed approach is sufficient for recognizing multiple appliances from aggregated measurements.


Author(s):  
Monica Navarro ◽  
Lorenza Giupponi ◽  
Christian Ibars ◽  
David Gregoratti ◽  
Javier Matamoros

Sign in / Sign up

Export Citation Format

Share Document