Distributed Algorithms for Demand Management and Grid Stability in Smart Grids

Author(s):  
Monica Navarro ◽  
Lorenza Giupponi ◽  
Christian Ibars ◽  
David Gregoratti ◽  
Javier Matamoros
2021 ◽  
Vol 14 (4) ◽  
pp. 57
Author(s):  
Helios Raharison ◽  
Emilie Loup-Escande

Acting to preserve our planet as much as possible is no longer optional in today's world. To do so, Smart Grids within the framework of electrical networks - involving not only Distribution System Operators (DSOs), but also consumers in their Energy Demand Management (EDM) activity - represent an innovative and sustainable solution. However, the integration of Smart Grids into network management or into consumers' homes implies changes at several levels: organizational, social, psychological, etc. This is why it is essential to consider the human factor in the design of the technologies used in these Smart Grids. This paper proposes the integration of DSO operators and consumers within a user-centered evaluation approach in order to design Smart Grids that are sufficiently acceptable to users to enable Positive Energy Territories that produce more energy than they consume. This demonstration will be illustrated by the VERTPOM® project aiming at facilitating the use of renewable energies specific to each territory in order to contribute to the reduction of greenhouse gases and make the territories less dependent on traditional energies, and thus make Picardy (in France) a Positive Energy Territory. This paper presents the user-centered evaluation approach applied to three technologies (i.e., the VERTPOM-BANK® supervision tool intended for DSO operators, the private web portal and the IBox smart meter intended for households) from the upstream design phase to the implementation of the technologies in real-life situations.


Author(s):  
Jesus Fraile-Ardanuy ◽  
Dionisio Ramirez ◽  
Sergio Martinez ◽  
Jairo Gonzalez ◽  
Roberto Alvaro

In this chapter, an overview of electric power systems is presented. The purpose is to describe the structure and operation of the power system and its evolution to the new smart grids. The first section gives an introduction about the electric grid and its evolution. Then, there is a section with a brief description of the different components of the electric power system: generation, transmission, distribution, and consumption. The third section is related to power system control, explaining why control actions are necessary in the power system to maintain the balance between supply and consumption and to keep constant the system frequency (at 50 or 60 Hz). In order to understand future applications of electric vehicles, it is important to present a fourth section related to fundamentals of the electricity markets. The chapter finishes with a description of the future power systems with high penetration of intermittent renewable energies, energy storage capacity, active demand management, and integration with telecommunication infrastructure.


Author(s):  
Isidro Fraga Hurtado ◽  
Julio Rafael Gómez Sarduy ◽  
Percy Rafael Viego Felipe ◽  
Vladimir Sousa Santos ◽  
Enrique Ciro Quispe Oqueña

Smart grids can be considered as a concept that integrates electrical, automatic control, information, and communication technologies. This concept constitutes a fundamental complement in the integration of renewable energy sources in electrical power systems. Although its application is fundamentally framed in transmission and distribution networks, it could also be implemented in industrial electrical systems. This article aims to analyze the advantages of implementing solutions based on smart grids in the industrial sector. Likewise, the results of its implementation in the large industry in the province of Cienfuegos, Cuba are presented. Specifically, reactive compensation, voltage, and demand management controls were integrated into a Supervision, Control, and Data Acquisition system forming a smart grid. It is shown that, in industries where infrastructure and equipment conditions exist, it is possible to successfully implement solutions with the functionalities and benefits inherent to smart grids.


Sign in / Sign up

Export Citation Format

Share Document