Effect of Stress/Strain Fields on Electrochemical Activity: Metallurgy/Stress Interaction and Surface Reactivity

Author(s):  
Vincent Vignal ◽  
Olivier Devos ◽  
Xavier Feaugas
TAPPI Journal ◽  
2012 ◽  
Vol 11 (1) ◽  
pp. 61-66 ◽  
Author(s):  
DOEUNG D. CHOI ◽  
SERGIY A. LAVRYKOV ◽  
BANDARU V. RAMARAO

Delamination between layers occurs during the creasing and subsequent folding of paperboard. Delamination is necessary to provide some stiffness properties, but excessive or uncontrolled delamination can weaken the fold, and therefore needs to be controlled. An understanding of the mechanics of delamination is predicated upon the availability of reliable and properly calibrated simulation tools to predict experimental observations. This paper describes a finite element simulation of paper mechanics applied to the scoring and folding of multi-ply carton board. Our goal was to provide an understanding of the mechanics of these operations and the proper models of elastic and plastic behavior of the material that enable us to simulate the deformation and delamination behavior. Our material model accounted for plasticity and sheet anisotropy in the in-plane and z-direction (ZD) dimensions. We used different ZD stress-strain curves during loading and unloading. Material parameters for in-plane deformation were obtained by fitting uniaxial stress-strain data to Ramberg-Osgood plasticity models and the ZD deformation was modeled using a modified power law. Two-dimensional strain fields resulting from loading board typical of a scoring operation were calculated. The strain field was symmetric in the initial stages, but increasing deformation led to asymmetry and heterogeneity. These regions were precursors to delamination and failure. Delamination of the layers occurred in regions of significant shear strain and resulted primarily from the development of large plastic strains. The model predictions were confirmed by experimental observation of the local strain fields using visual microscopy and linear image strain analysis. The finite element model predicted sheet delamination matching the patterns and effects that were observed in experiments.


1996 ◽  
Vol 24 (1) ◽  
pp. 11-38 ◽  
Author(s):  
G. M. Kulikov

Abstract This paper focuses on four tire computational models based on two-dimensional shear deformation theories, namely, the first-order Timoshenko-type theory, the higher-order Timoshenko-type theory, the first-order discrete-layer theory, and the higher-order discrete-layer theory. The joint influence of anisotropy, geometrical nonlinearity, and laminated material response on the tire stress-strain fields is examined. The comparative analysis of stresses and strains of the cord-rubber tire on the basis of these four shell computational models is given. Results show that neglecting the effect of anisotropy leads to an incorrect description of the stress-strain fields even in bias-ply tires.


Geology ◽  
2004 ◽  
Vol 32 (1) ◽  
pp. 49 ◽  
Author(s):  
John P. Craddock ◽  
David W. Farris ◽  
Aimee Roberson

2014 ◽  
Vol 59 (2) ◽  
pp. 443-446 ◽  
Author(s):  
J. Borowiecka-Jamrozek ◽  
J. Lachowski

Abstract The paper presents results of computer simulations of the stress/strain field built up in a cobalt matrix diamond impregnated saw blade segment during its fabrication and after loading the protruding diamond with an external force. The main objective of this work was to create better understanding of the factors affecting retention of diamond particles in a metallic matrix of saw blade segments, which are produced by means of the powder metallurgy technology. The effective use of diamond impregnated tools strongly depends on mechanical and tribological properties of the matrix, which has to hold the diamond grits firmly. The diamond retention capability of the matrix is affected in a complex manner by chemical or mechanical interactions between the diamond crystal and the matrix during the segment manufacture. Due to the difference between the thermal expansion coefficients of the diamond and metallic matrix, a complex stress/strain field is generated in the matrix surrounding each diamond crystal. It is assumed that the matrix potential for diamond retention can be associated with the amount of the elastic and plastic deformation energy and the size of the deformation zone occurring in the matrix around diamonds. The stress and strain fields generated in the matrix were calculated using the Abaqus software. It was found that the stress and strain fields generated during segment fabrication change to a large extent as the diamond crystal emerges from the cobalt matrix to reach its working height of protrusion.


Sign in / Sign up

Export Citation Format

Share Document