The Impact of Gene Silencing on Horizontal Gene Transfer and Bacterial Evolution

2016 ◽  
pp. 157-186 ◽  
Author(s):  
W.W. Navarre
2009 ◽  
Vol 37 (4) ◽  
pp. 792-795 ◽  
Author(s):  
John W. Whitaker ◽  
Glenn A. McConkey ◽  
David R. Westhead

HGT (horizontal gene transfer) is recognized as an important force in bacterial evolution. Now that many eukaryotic genomes have been sequenced, it has become possible to carry out studies of HGT in eukaryotes. The present review compares the different approaches that exist for identifying HGT genes and assess them in the context of studying eukaryotic evolution. The metabolic evolution resource metaTIGER is then described, with discussion of its application in identification of HGT in eukaryotes.


Author(s):  
Jerónimo Rodríguez-Beltrán ◽  
Javier DelaFuente ◽  
Ricardo León-Sampedro ◽  
R. Craig MacLean ◽  
Álvaro San Millán

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Ahmed M. Moustafa ◽  
Senthil Kumar Velusamy ◽  
Lidiya Denu ◽  
Apurva Narechania ◽  
Daniel H. Fine ◽  
...  

ABSTRACT Like the bacterial residents of the human gut, it is likely that many of the species in the human oral microbiota have evolved to better occupy and persist in their niche. Aggregatibacter actinomycetemcomitans (Aa) is both a common colonizer of the oral cavity and has been implicated in the pathogenesis of periodontal disease. Here, we present a whole-genome phylogenetic analysis of Aa isolates from humans and nonhuman primates that revealed an ancient origin for this species and a long history of association with the Catarrhini, the lineage that includes Old World monkeys (OWM) and humans. Further genomic analysis showed a strong association with the presence of a short-chain fatty acid (SCFA) catabolism locus (atoRDAEB) in many human isolates that was absent in almost all nonhuman OWM isolates. We show that this locus was likely acquired through horizontal gene transfer. When grown under conditions that are similar to those at the subgingival site of periodontitis (anaerobic, SCFA replete), Aa strains with atoRDAEB formed robust biofilms and showed upregulation of genes involved in virulence, colonization, and immune evasion. Both an isogenic deletion mutant and nonhuman primate isolates lacking the ato locus failed to grow in a robust biofilm under these conditions, but grew well under the carbohydrate-rich conditions similar to those found above the gumline. We propose that the acquisition of the ato locus was a key evolutionary step allowing Aa to utilize SCFAs, adapt, and modulate subgingival disease. IMPORTANCE There has been considerable interest in the impact of short-chain fatty acids (SCFAs) on inflammatory effects related to the microbiome. Here, we present evidence that SCFAs may also be important in disease by providing an energy source or disease-associated cue for colonizing pathogens. We propose that SCFAs allow Aggregatibacter actinomycetemcomitans (Aa) to adapt to the subgingival anaerobic environment, which is the site of human periodontitis. Under anaerobic, SCFA-rich conditions, human-derived Aa strains that possess butyrate metabolism genes form strong biofilms and upregulate virulence genes. Our phylogenetic analysis highlights a long history of evolution of Aa with its primate hosts and suggests that the acquisition of butyrate metabolism genes may have been a critical step in allowing Aa to colonize a new niche and cause disease in humans. Overall, this study highlights the important role that horizontal gene transfer may play in microbial adaptation and the evolution of infectious disease.


2004 ◽  
Vol 186 (19) ◽  
pp. 6575-6585 ◽  
Author(s):  
Pavel S. Novichkov ◽  
Marina V. Omelchenko ◽  
Mikhail S. Gelfand ◽  
Andrei A. Mironov ◽  
Yuri I. Wolf ◽  
...  

ABSTRACT We describe a simple theoretical framework for identifying orthologous sets of genes that deviate from a clock-like model of evolution. The approach used is based on comparing the evolutionary distances within a set of orthologs to a standard intergenomic distance, which was defined as the median of the distribution of the distances between all one-to-one orthologs. Under the clock-like model, the points on a plot of intergenic distances versus intergenomic distances are expected to fit a straight line. A statistical technique to identify significant deviations from the clock-like behavior is described. For several hundred analyzed orthologous sets representing three well-defined bacterial lineages, the α-Proteobacteria, the γ-Proteobacteria, and the Bacillus-Clostridium group, the clock-like null hypothesis could not be rejected for ∼70% of the sets, whereas the rest showed substantial anomalies. Subsequent detailed phylogenetic analysis of the genes with the strongest deviations indicated that over one-half of these genes probably underwent a distinct form of horizontal gene transfer, xenologous gene displacement, in which a gene is displaced by an ortholog from a different lineage. The remaining deviations from the clock-like model could be explained by lineage-specific acceleration of evolution. The results indicate that although xenologous gene displacement is a major force in bacterial evolution, a significant majority of orthologous gene sets in three major bacterial lineages evolved in accordance with the clock-like model. The approach described here allows rapid detection of deviations from this mode of evolution on the genome scale.


2020 ◽  
Author(s):  
Anastasia Kottara ◽  
James P.J. Hall ◽  
Michael A. Brockhurst

ABSTRACTPlasmids are common in natural bacterial communities, facilitating bacterial evolution via horizontal gene transfer. Bacterial species vary in their proficiency to host plasmids: Whereas plasmids are stably maintained in some species regardless of selection for plasmid-encoded genes, in other species, even beneficial plasmids are rapidly lost. It is, however, unclear how this variation in host proficiency affects plasmid persistence in communities. Here, we test this using multispecies bacterial soil communities comprising species varying in their proficiency to host a large conjugative mercury resistance plasmid. Plasmids reached higher community-level abundance where beneficial and when introduced to the community in a more proficient host species. Proficient plasmid host species were also better able to disseminate the plasmid to a wider diversity of host species. These findings suggest that the dynamics of plasmids in natural bacterial communities depend not only upon the plasmid’s attributes and the selective environment, but also upon the proficiency of their host species.


Sign in / Sign up

Export Citation Format

Share Document