Prediction of Thermochemical Properties Across the Periodic Table

Author(s):  
C. Peterson ◽  
D.A. Penchoff ◽  
A.K. Wilson
Author(s):  
R. Herrera ◽  
A. Gómez

Computer simulations of electron diffraction patterns and images are an essential step in the process of structure and/or defect elucidation. So far most programs are designed to deal specifically with crystals, requiring frequently the space group as imput parameter. In such programs the deviations from perfect periodicity are dealt with by means of “periodic continuation”.However, for many applications involving amorphous materials, quasiperiodic materials or simply crystals with defects (including finite shape effects) it is convenient to have an algorithm capable of handling non-periodicity. Our program “HeGo” is an implementation of the well known multislice equations in which no periodicity assumption is made whatsoever. The salient features of our implementation are: 1) We made Gaussian fits to the atomic scattering factors for electrons covering the whole periodic table and the ranges [0-2]Å−1 and [2-6]Å−1.


Author(s):  
Michael D. Gordin

Dmitrii Mendeleev (1834–1907) is a name we recognize, but perhaps only as the creator of the periodic table of elements. Generally, little else has been known about him. This book is an authoritative biography of Mendeleev that draws a multifaceted portrait of his life for the first time. As the book reveals, Mendeleev was not only a luminary in the history of science, he was also an astonishingly wide-ranging political and cultural figure. From his attack on Spiritualism to his failed voyage to the Arctic and his near-mythical hot-air balloon trip, this is the story of an extraordinary maverick. The ideals that shaped his work outside science also led Mendeleev to order the elements and, eventually, to engineer one of the most fascinating scientific developments of the nineteenth century. This book is a classic work that tells the story of one of the world's most important minds.


2020 ◽  
Author(s):  
Nayyereh hatefi ◽  
William Smith

<div>Ideal{gas thermochemical properties (enthalpy, entropy, Gibbs energy, and heat capacity, Cp) of 49 alkanolamines potentially suitable for CO2 capture applications and their carbamate and protonated forms were calculated using two high{order electronic structure methods, G4 and G3B3 (or G3//B3LYP). We also calculate for comparison results from the commonly used B3LYP/aug-cc-pVTZ method. This data is useful for the construction of molecular{based thermodynamic models of CO2 capture processes involving these species. The Cp data for each species over the temperature range 200 K{1500 K is presented as functions of temperature in the form of NASA seven-term polynomial expressions, permitting the set of thermochemical properties to be calculated over this temperature range. The accuracy of the G3B3 and G4 results is estimated to be 1 kcal/mol and the B3LYP/aug-cc-pVTZ results are of nferior quality..</div>


2018 ◽  
Author(s):  
Alexander Bolano
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document