Electrochemical biosensor for the detection of cauliflower mosaic virus 35 S gene sequences using lead sulfide nanoparticles as oligonucleotide labels

2008 ◽  
Vol 377 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Wei Sun ◽  
Jianghua Zhong ◽  
Peng Qin ◽  
Kui Jiao
2011 ◽  
Vol 419 (2) ◽  
pp. 168-172 ◽  
Author(s):  
Hao Fan ◽  
Kun Zhao ◽  
Yan Lin ◽  
Xiaoyun Wang ◽  
Bo Wu ◽  
...  

A novel coronavirus first broke out in Wuhan, China in December, 2019 has been declared a pandemic by WHO on March, 2020. This work aimed to search for probable ancestor of the virus, phylogeny of 2019-nCoVs and similar SL-CoVs based on the whole genome, M, N, ORF1ab, orf3a, and S gene sequences (n=84) obtained from GenBank using BLASTn software in the NCBI was done. Nucleotides of ORF3a and S-genes among 2019-nCoVs are identical, whereas its similar on the whole genome (99.9-100%), M-gene (99.7-100%), N-gene (99.9-100%) and ORF1ab-gene (99.7-100%). nCoVs are similar to bat CoV/RaTG13 on the whole genome (96.2%), M-gene (95.0%), N-gene (97%), ORF1ab-gene (95.3%), ORF3a-gene (99.1%) and S-gene (90.7%). Likewise, nCoVs exhibited homology to bat-CoVZXC21 on M-gene (93.2%), N-gene (91.5%), ORF1ab-gene (93.1%) and ORF3a-gene (94.4%). The emergent viruses shared identity to bat-CoVZC45 on N-gene (91.3%), ORF1ab-gene (92.8%) and ORF3a-gene (94.0%). In addition, pangolin-CoV/MP789 exhibited common sequences on M-gene (91.0%), N-gene (96.3%) and ORF3a-gene (93.3%) to nCoV. Furthermore, pangolin-CoV/MP789 is analogous to bat CoV/RaTG13 (91.3%) and bat-SL-CoVZXC21 (92.2%) on M-gene and to bat CoV/RaTG13 (94.8%) on N-gene. Nevertheless, nCoVs are distinct from the previously identified SL-CoVs of human origin. The present analysis indicates that nCoVs may have transmitted from bats, pangolin and/or unidentified hosts.


Author(s):  
Roberto Alers-Velazquez ◽  
Sushant Khandekar ◽  
Clare Muller ◽  
Jennifer Boldt ◽  
Scott Leisner

AbstractLower temperatures delayed development of systemic symptoms by Cauliflower mosaic virus (CaMV) in two different plant hosts. However, lower temperature exposure increased CaMV nucleic acid levels in leaves of systemically-infected turnips. Furthermore, lower temperature altered the formation of aggregates formed by the CaMV major inclusion body (IB) protein, P6. Finally, lower temperature altered the architecture of the actin cytoskeleton. These data may suggest that lower temperatures alter the actin cytoskeleton, facilitating the formation of larger IBs that hold on to their internal virions more strongly than small ones, impairing virus particle release and causing a delay in systemic infection.


2002 ◽  
Vol 15 (10) ◽  
pp. 1050-1057 ◽  
Author(s):  
Yongzhong Li ◽  
Scott M. Leisner

The Cauliflower mosaic virus (CaMV) gene VI product (P6) is a multifunctional protein essential for viral propagation. It is likely that at least some of these functions require P6 self-association. The work described here was performed to confirm that P6 self-associates and to identify domains involved in this interaction. Yeast two-hybrid analyses indicated that full-length P6 self-associates and that this interaction is specific. Additional analyses indicated that at least four independent domains bind to full-length P6. When a central domain (termed domain D3) was removed, these interactions were abolished. However, this deleted P6 was able to bind to the full-length wild-type protein and to isolated domain D3. Viruses lacking domain D3 were incapable of producing a systemic infection. Isolated domain D3 was capable of binding to at least two of the other domains but was unable to self-associate. This suggests that domain D3 facilitates P6 self-association by binding to the other domains but not itself. The presence of multiple domains involved in P6 self-association may help explain the ability of this protein to form the intracellular inclusions characteristic of caulimoviruses.


Virology ◽  
1972 ◽  
Vol 47 (3) ◽  
pp. 694-700 ◽  
Author(s):  
G.G. Conti ◽  
G. Vegetti ◽  
Maria Bassi ◽  
M.Augusta Favali

Virology ◽  
1989 ◽  
Vol 172 (2) ◽  
pp. 451-459 ◽  
Author(s):  
Rebecca Stratford ◽  
Simon N. Covey

Virology ◽  
1987 ◽  
Vol 158 (2) ◽  
pp. 444-446 ◽  
Author(s):  
Mark J. Young ◽  
Stephen D. Daubert ◽  
Robert J. Shepherd

Sign in / Sign up

Export Citation Format

Share Document