m gene
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 105)

H-INDEX

41
(FIVE YEARS 4)

2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Walid Oueslati ◽  
Mohamed Ridha Rjeibi ◽  
Hayet Benyedem ◽  
Aymen Mamlouk ◽  
Fatma Souissi ◽  
...  

This study was conducted in northeastern Tunisia to estimate both the prevalence and the risk factors of Salmonella in broiler flocks as well as to characterize the isolated multidrug-resistant (MDR) Salmonella strains. In the present study, a total number of 124 farms were sampled; Salmonella isolates were identified by the alternative technique VIDAS Easy Salmonella. The susceptibility of Salmonella isolates was assessed against 21 antimicrobials using the disk diffusion method on Mueller–Hinton agar using antimicrobial discs. Some antimicrobial resistance genes were identified using PCR. The prevalence rate of Salmonella infection, in the sampled farms, was estimated at 19.9% (64/322). Moreover, a total number of 13 different serotypes were identified. High rate of resistance was identified against nalidixic acid (82.85%), amoxicillin (81.25%), streptomycin (75%), and ciprofloxacin (75%). Alarming level of resistance to ertapenem (12.5%) was noticed. A total of 87.5% (56/64) of isolated strains were recognized as MDR. Three MDR strains were extended-spectrum β-lactamases (ESBL)-producers and three MDR strains were cephalosporinase-producers. The blaCTX-M gene was amplified in all the three ESBL strains. The qnrB gene was not amplified in fluoroquinolones-resistant strains. The tetA and tetB genes were amplified in 5% (2/40) and 2.5% (1/40) of tetracycline-resistant strains, respectively. The dfrA1 gene was amplified in five of the 20 trimethoprim-resistant strains. The mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes were not amplified in any of the phenotypically colistin-resistant strains. In terms of integrase genes int1 and int2, only gene class 2 was amplified in 11% (7/64) of analyzed strains. Risk factors, such as the poor level of cleaning and disinfection, the lack of antimicrobial treatment at the start of the breeding, and a crawl space duration lower than 15 days, were associated with high Salmonella infection in birds. These data should be considered when preparing salmonellosis control programs in Tunisian broiler flocks.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2446
Author(s):  
Luciano M. Thomazelli ◽  
Juliana A. Sinhorini ◽  
Danielle B. L. Oliveira ◽  
Terezinha Knöbl ◽  
Tatiana C. M. Bosqueiro ◽  
...  

Newcastle disease virus (NDV) can infect over 250 bird species with variable pathogenicity; it can also infect humans in rare cases. The present study investigated an outbreak in feral pigeons in São Paulo city, Brazil, in 2019. Affected birds displayed neurological signs, and hemorrhages were observed in different tissues. Histopathology changes with infiltration of mononuclear inflammatory cells were also found in the brain, kidney, proventriculus, heart, and spleen. NDV staining was detected by immunohistochemistry. Twenty-seven out of thirty-four tested samples (swabs and tissues) were positive for Newcastle disease virus by RT-qPCR test, targeting the M gene. One isolate, obtained from a pool of positive swab samples, was characterized by the intracerebral pathogenicity index (ICPI) and the hemagglutination inhibition (HI) tests. This isolate had an ICPI of 0.99, confirming a virulent NDV strain. The monoclonal antibody 617/161, which recognizes a distinct epitope in pigeon NDV strains, inhibited the isolate with an HI titer of 512. A complete genome of NDV was obtained using next-generation sequencing. Phylogenetic analysis based on the complete CDS F gene grouped the detected isolate with other viruses from subgenotype VI.2.1.2, class II, including one previously reported in Southern Brazil in 2014. This study reports a comprehensive characterization of the subgenotype VI.2.1.2, which seems to have been circulating in Brazilian urban areas since 2014. Due to the zoonotic risk of NDV, virus surveillance in feral pigeons should also be systematically performed in urban areas.


Author(s):  
A.K. Galiullin ◽  
◽  
A. Gueriche ◽  
V.G. Gumerov ◽  
A.Y. Shaeva ◽  
...  

This study reports on the molecular-genetic characterization of a field strain of BPIV-3 isolated in the Republic of Tatarstan. M gene fragments of the Russian isolate LD-9 and the vaccine strain PTK/86 were sequenced and aligned with the corresponding sequences of the virus strains presented in GenBank. The results of the phylogenetic analysis showed that the Russian isolate LD-9 (MW52481) and the vaccine strain PTK45/86 belong to the genotype A of the parainfluenza virus-3, as well as the reference strain SF-4. The Russian isolate LD-9 showed 98.3 % similarity with the reference strain SF-4, and the Russian vaccine strain PTK-45/86 was 100 % identical to the reference strain.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2335
Author(s):  
Lixiang Xie ◽  
Guanlong Xu ◽  
Lingxiang Xin ◽  
Zhaofei Wang ◽  
Rujuan Wu ◽  
...  

Reassortant variant viruses generated between 2009 H1N1 pandemic influenza virus [A(H1N1)pdm09] and endemic swine influenza viruses posed a potential risk to humans. Surprisingly, genetic analysis showed that almost all of these variant viruses contained the M segment from A(H1N1)pdm09, which originated from Eurasian avian-like swine influenza viruses. Studies have shown that the A(H1N1)pdm09 M gene is critical for the transmissibility and pathogenicity of the variant viruses. However, the M gene encodes two proteins, M1 and M2, and which of those plays a more important role in virus pathogenicity remains unknown. In this study, the M1 and M2 genes of A(H1N1)pdm09 were replaced with those of endemic H3N2 swine influenza virus, respectively. The chimeric viruses were rescued and evaluated in vitro and in mice. Both M1 and M2 of H3N2 affected the virus replication in vitro. In mice, the introduction of H3N2 M1 attenuated the chimeric virus, where all the mice survived from the infection, compared with the wild type virus that caused 100 % mortality. However, the chimeric virus containing H3N2 M2 was still virulent to mice, and caused 16.6% mortality, as well as similar body weight loss to the wild type virus infected group. Compared with the wild type virus, the chimeric virus containing H3N2 M1 induced lower levels of inflammatory cytokines and higher levels of anti-inflammatory cytokines, whereas the chimeric virus containing H3N2 M2 induced substantial pro-inflammatory responses, but higher levels of anti-inflammatory cytokines. The study demonstrated that Eurasian avian-like M1 played a more important role than M2 in the pathogenicity of A(H1N1)pdm09 in mice.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1527
Author(s):  
Andreja Jungić ◽  
Vladimir Savić ◽  
Josip Madić ◽  
Ljubo Barbić ◽  
Besi Roić ◽  
...  

In a total of 1536 blood serum samples analysed by ELISA, antibodies for IAV nucleoprotein (NP) were detected in 30.3%. Results from HI show that the most common subtype of swIAV in the Croatian pig population was H1N1 (44.6%), followed by H3N2 (42.7%) and H1N2 (26.3%). Antibodies to at least one subtype were detected in 62.19% of blood serum samples. Detection of swIAV antigen was performed by IHC and detected in 8 of 28 lung samples collected post-mortem. The matrix (M) gene was detected in nine of one hundred and forty-two lung tissue samples and in seven of twenty-nine nasopharyngeal swabs. Phylogenetic analysis of amplified HA and NA gene fragments in Croatian isolates suggests the presence of swIAV H1avN1av.


2021 ◽  
Vol 23 (2) ◽  
pp. 15-24
Author(s):  
T. O. Egwuatu ◽  
O. D. Ishola ◽  
O. E. Oladele

Antibiotics resistance is a rapidly emerging issue through the misuse of antibiotics to treat human and animalrelated infections. The use of beta-lactams has increased considerably since its discovery so also resistant genes leading to Extended-Spectrum Beta-Lactamases (ESBL) mediated by the presence of blaCTX-M , blaTEM and blaSHV genes present in most Gram-negative bacteria. This study aimed to detect the widespread distribution of ESBL genes from fomites, healthcare workers, and patients suffering from urinary tract infection in two hospitals in  Lagos state, Nigeria. A total of 150 swab samples were collected from fomites, health care workers, and cathetersof patients suffering from urinary tract infection (UTI). Antibiotics susceptibility test was performed by Kirby- Bauer technique according to CLSI guidelines. Organisms that tested positive phenotypically for ESBL were subjected to PCR for molecular analysis. ESBL prevalence rate of 21.8% and a carbapenemase-resistance rate of 16.7% were recorded. The ESBL producing isolates showed the highest resistance to ceftriaxone (82.4%) and the least resistance to tigecycline (5.9%). The existence of blaCTX-M and blaTEM was detected in 76.5% and 17.6% of the isolates respectively, while bla encoding gene was not detected in this study. The distribution of blaSHV genes detected in this study is of great concern which necessitates strict control measures in the usage of antibiotics especially the third-generation cephalosporin. In summary, the presence and distribution of ESBL encoding genes within two hospitals in Lagos were tested and the highest occurrence was recorded in blaCTX-M gene  reducing and limiting the available treatment option for infections.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3290-3290
Author(s):  
Aristeidis G. Telonis ◽  
Qin Yang ◽  
Hsuan-Ting Huang ◽  
Maria E. Figueroa

Abstract Mutations in DNMT3A and IDH1/2 are each found in ~20% of AML patients. 10-15% of AMLs carry mutations in both genes (herein, double mutants), resulting in a unique methylation landscape and upregulation of a signaling signature. In murine models, the presence of both mutations results in greater leukemogenic potential. However, the specific mechanism through which DNA methylation (DNAme) drives gene expression programs in double mutants remains unclear. We hypothesized that the link between DNAme and gene expression would be explained by more than simple proximity, and that the genomic architecture of the affected genes would play a key role. To test this, we first performed an unbiased correlation analysis of gene expression with DNAme at all CpG sites (mCs) located within the same topologically associated domain (TAD). We identified 406 genes with significant (FDR> 5% and absolute rho > 0.5) expression-methylation correlations with mCs proximal to the respective genes (herein the E-M gene set). In addition, another 2,088 genes (the L E-M set) were identified with long-range correlations (>2Kb from the gene body) with mCs in the respective TAD (median distance = 451 Kb). As a set, the E-M genes significantly overlapped (P < 10 -2) with genes identified as either differentially expressed (DE; n=890) or differentially methylated (DM; n= 4,006) between IDH1/2 and DNMT3A mutant AMLs. Notably, a simple overlap analysis of DE and DM genes showed no significant overlap between them, thus demonstrating that correlation analysis performed better in bridging the epigenome with the transcriptome. DAVID and Gene Set Enrichment Analysis on the genes ranked by correlation strength revealed that signaling, fructose and lipid metabolism pathways are enriched in the E-M gene set (FDR < 5%) but not in the L E-M set. Analysis of transcription factor (TF) binding profiles did not reveal a common set of TF(s) binding to the mCs proximal to the genes of the identified pathways. Thus, we hypothesized that the E-M genes have other structural characteristics in common that drive regulation through DNAme, for which we focused on their genomic architecture. This analysis revealed that introns of genes in both the E-M and L E-M sets are significantly denser in Mammalian Interspersed Repeats (MIR) than expected by random chance (P < 10 -2). Additionally, E-M genes were significantly sparser in endogenous retroviruses (ERVL) and primate-specific Alu elements. mCs with significant correlations were also enriched at MIR and depleted from Alu elements (P < 10 -2), thus creating a regulatory network between mCs and genes with MIR sequences as the common denominator. Genome-wide, CpGs within retrotransposons that were differentially methylated among the three AML subtypes were enriched at enhancer regions or coding genes, particularly the E-M genes. Furthermore, the Dnmt3a knock-out (KO) or Idh2 R140Q knock-in mouse models display the same architectural biases at genes correlated with DNAme as the E-M genes identified in the human samples. Next, we sought to put our findings in the context of normal hematopoiesis and found that genes upregulated during normal hematopoietic differentiation are significantly denser in MIR elements and sparser of Alu elements than expected (P < 10 -2). Alignment of the leukemic samples within normal differentiation trajectories revealed that double mutants resembled differentiated cell types more closely, while DNMT3A and IDH1/2 single mutants resembled hematopoietic stem cells. The E-M and L E-M sets significantly overlapped (P < 10 -2) with those genes upregulated during myeloid but not erythroid or lymphoid differentiation, demonstrating that genes regulated by DNAme are at the core of the biology of these AMLs. In summary, our integrative work sheds light on a novel mechanism in which epigenetic modifications can regulate gene expression through MIR sequences within introns of hematopoietic-relevant genes and we posit that overlapping CpG dinucleotides may act as recruiters or substrates of DNMT3A and/or TET proteins. This mechanism seems to also be active in normal hematopoiesis and thus, is hijacked by leukemic cells. Therefore, our findings identify retrotransposons as a missing link in the understanding of epigenetic regulation of gene expression, reveal a previously uncharacterized role for these elements in leukemogenesis, and point to different cells of origin for each AML subtype. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S215-S215
Author(s):  
Jeremy Meeder ◽  
Derek Moates ◽  
Hannah Pierce ◽  
Jamie Hutchinson ◽  
Pia Cumagun ◽  
...  

Abstract Background The ePlex BCID Gram-Negative (GN) panel utilizes electrowetting technology to detect the most common causes of GN bacteremia (21 targets) and 6 antimicrobial resistance genes from positive blood culture bottles. Rapid detection of extended spectrum β-lactamases (ESBL; CTX-M), carbapenemases (KPC, NDM, IMP, VIM, OXA 23/48), and highly resistant bacteria such as Stenotrophomonas maltophilia enables early optimization of antimicrobial therapy. Methods In this prospective study, we evaluated the performance of the BCID-GN panel compared to traditional standard of care culture and susceptibility testing with organism identification using the BioMerieux Vitek MS Matrix Assisted Laser Desorption Ionization (MALDI) Time of Flight mass spectrometry. Samples submitted for standard of care testing in Biomerieux BacT/Alert resin FA/FN blood culture bottles on the BacT/Alert VIRTUO automated blood culture system with GN bacteria on direct exam (n=108) were included. Results All but two GN bacteria identified by MALDI were represented on the BCID-GN Panel (106/108, 98.1%) and most tests (107/108, 99.1%) yielded valid results. Discordant analyses revealed a positive percent agreement (PPA) of 102/105 (97.2%) with 3 false negatives (2 pan-susceptible Enterobacterales, 1 ESBL E.coli) and a negative percent agreement (NPA) of 105/105 (100%). Consistent with alternative resistance mechanisms, only 8/12 (66.7%) of Enterobacterales with resistance to 3rd generation cephalosporins harbored the CTX-M gene. In contrast, 8/8 (100%) of isolates from samples harboring the CTX-M gene were resistant to 3rd generation cephalosporins. Conclusion Detection of 1 S. maltophilia, 1 Acinetobacter baumannii expressing OXA 23/48, and 8 Enterobacterales expressing CTX-M represent opportunities for early optimization of antimicrobial therapy in 10/108 (9.3%) of samples. The BCID-GN Panel provides rapid accurate detection of resistant gram negative bacteria enabling high quality data driven optimization of antimicrobial therapy. Disclosures Todd P. McCarty, MD, Cidara (Grant/Research Support)GenMark (Grant/Research Support, Other Financial or Material Support, Honoraria for Research Presentation)T2 Biosystems (Consultant) Sixto M. Leal, Jr., MD, PhD, Abnova (Grant/Research Support)AltImmune (Grant/Research Support)Amplyx Pharmaceuticals (Grant/Research Support)Astellas Pharmaceuticals (Grant/Research Support)CNINE Dx (Grant/Research Support)GenMark Diagnostics (Grant/Research Support, Other Financial or Material Support, Honoraria- Research Presentation)IHMA (Grant/Research Support)IMMY Dx (Grant/Research Support)JMI/Sentry (Grant/Research Support)mFluiDx Dx (Grant/Research Support)SpeeDx Dx (Grant/Research Support)Tetraphase Pharmaceuticals (Grant/Research Support)


Sign in / Sign up

Export Citation Format

Share Document