viral propagation
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 85)

H-INDEX

26
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Syed Mohammed BasheeruddinAsdaq ◽  
N. Raghavendra Naveen ◽  
Lakshmi Narasimha Gunturu ◽  
Kalpana Pamayyagari ◽  
Ibrahim Abdullah ◽  
...  

Since its outbreak, the coronavirus (COVID-19) pandemic has caused havoc on people’s lives. All activities were paused due to the virus’s spread across the continents. Researchers have been working hard to find new medication treatments for the COVID-19 pandemic. The World Health Organization (WHO) recommends that safety and self-measures play a major role in preventing the virus from spreading from one person to another. Wireless technology is playing a critical role in avoiding viral propagation. This technology mainly comprises of portable devices that assist self-isolated patients in adhering to safe precautionary measures. Government officials are currently using wireless technologies to identify infected people at large gatherings. In this research, we gave an overview of wireless technologies that assisted the general public and healthcare professionals in maintaining effective healthcare services during COVID-19. We also discussed the possible challenges faced by them for effective implementation in day-to-day life. In conclusion, wireless technologies are one of the best techniques in today’s age to effectively combat the pandemic.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2459
Author(s):  
Kannan Balakrishnan ◽  
Ananda Jaguva Vasudevan ◽  
Krishnaveni Mohareer ◽  
Tom Luedde ◽  
Carsten Münk ◽  
...  

Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2–HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect on viral propagation were unknown. Here, we report that Staufen-2 interacts with HIV-1 Gag and is incorporated into virions and that encapsidated Staufen-2 boosted viral infectivity. Further, Staufen-2 gets co-packaged into virions, possibly by interacting with host factors Staufen-1 or antiviral protein APOBEC3G, which resulted in different outcomes on the infectivity of Staufen-2-encapsidated virions. These observations suggest that encapsidated host factors influence viral population dynamics and infectivity. With the explicit identification of the incorporation of Staufen proteins into HIV-1 and other retroviruses, such as Simian Immunodeficiency Virus (SIV), we propose that packaging of RNA binding proteins, such as Staufen, in budding virions of retroviruses is probably a general phenomenon that can drive or impact the viral population dynamics, infectivity, and evolution.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2383
Author(s):  
Huawei Xia ◽  
Zeming Zhang ◽  
Fuping You

Murine hepatitis virus strain A59 (MHV-A59) was shown to induce pyroptosis, apoptosis, and necroptosis of infected cells, especially in the murine macrophages. However, whether ferroptosis, a recently identified form of lytic cell death, was involved in the pathogenicity of MHV-A59 is unknown. We utilized murine macrophages and a C57BL/6 mice intranasal infection model to address this. In primary macrophages, the ferroptosis inhibitor inhibited viral propagation, inflammatory cytokines released, and cell syncytia formed after MHV-A59 infection. In the mouse model, we found that in vivo administration of liproxstatin-1 ameliorated lung inflammation and tissue injuries caused by MHV-A59 infection. To find how MHV-A59 infection influenced the expression of ferroptosis-related genes, we performed RNA-seq in primary macrophages and found that MHV-A59 infection upregulates the expression of the acyl-CoA synthetase long-chain family member 1 (ACSL1), a novel ferroptosis inducer. Using ferroptosis inhibitors and a TLR4 inhibitor, we showed that MHV-A59 resulted in the NF-kB-dependent, TLR4-independent ACSL1 upregulation. Accordingly, ACSL1 inhibitor Triacsin C suppressed MHV-A59-infection-induced syncytia formation and viral propagation in primary macrophages. Collectively, our study indicates that ferroptosis inhibition protects hosts from MHV-A59 infection. Targeting ferroptosis may serve as a potential treatment approach for dealing with hyper-inflammation induced by coronavirus infection.


2021 ◽  
Author(s):  
Inessa Manuelyan ◽  
Anna M. Schmoker ◽  
Boyd L. Yount ◽  
Philip Eisenhauer ◽  
Judith I. Keller ◽  
...  

Flaviviruses are enveloped, positive-strand RNA viruses that cause millions of infections in the human population annually. Although Zika virus (ZIKV) had been detected in humans as early as the 1950s, its reemergence in South America in 2015 resulted in a global health crisis. While flaviviruses encode 10 proteins that can be post-translationally modified by host enzymes, little is known regarding post-translational modifications (PTMs) of the flavivirus proteome. We used mass spectrometry to comprehensively identify host-driven PTMs on the ZIKV proteome. This approach allowed us to identify 43 PTMs across 8 ZIKV proteins, including several that are highly conserved within the Flavivirus genus. Notably, we found two phosphosites on the ZIKV envelope protein that are functionally important for viral propagation and appear to regulate viral budding. Additionally, we discovered 115 host kinases that interacted with ZIKV proteins and determined that Bosutinib, an FDA-approved tyrosine kinase inhibitor that targets ZIKV interacting host kinases, impairs ZIKV growth. Thus, we have defined a high-resolution map of host-driven PTMs on ZIKV proteins as well as cellular interacting kinases, uncovered a novel mechanism of host driven-regulation of ZIKV budding, and identified an FDA-approved inhibitor of ZIKV growth.


2021 ◽  
Vol 12 ◽  
Author(s):  
Asako Takagi ◽  
Yutaka Amako ◽  
Daisuke Yamane ◽  
Bouchra Kitab ◽  
Yuko Tokunaga ◽  
...  

The 3′ untranslated region (UTR) of the hepatitis C virus (HCV) genome plays a significant role in replication including the poly(U) tract (You and Rice, 2008). Here we established an HCV clone that is infectious in vitro and in vivo, from an Egyptian patient with chronic HCV infection and hepatocellular carcinoma (HCC). First, we inoculated the patient plasma into a humanized chimeric mouse and passaged. We observed HCV genotype 4a propagation in the chimeric mouse sera at 1.7 × 107 copies/mL after 6 weeks. Next, we cloned the entire HCV sequence from the HCV-infected chimeric mouse sera using RT-PCR, and 5′ and 3′ RACE methodologies. We obtained first a shorter clone (HCV-G4 KM short, GenBank: AB795432.1), which contained 9,545 nucleotides with 341 nucleotides of the 5′UTR and 177 nucleotides of the 3′UTR, and this was frequently obtained for unknown reasons. We also obtained a longer clone by dividing the HCV genome into three fragments and the poly (U) sequences. We obtained a longer 3′UTR sequence than that of the HCV-G4 KM short clone, which contained 9,617 nucleotides. This longer clone possessed a 3′-UTR of 249 nucleotides (HCV-G4 KM long, GenBank: AB795432.2), because of a 71-nucleotide longer poly (U) stretch. The HCV-G4-KM long clone, but not the HCV-G4-KM short clone, could establish infection in human hepatoma HuH-7 cells. HCV RNAs carrying a nanoluciferase (NL) reporter were also constructed and higher replication activity was observed with G4-KM long-NL in vitro. Next, both short and long RNAs were intra-hepatically injected into humanized chimeric mice. Viral propagation was only observed for the chimeric mouse injected with the HCV-G4 KM long RNA in the sera after 21 days (1.64 × 106 copies/mL) and continued until 10 weeks post inoculation (wpi; 1.45–4.74 × 107 copies/mL). Moreover, sequencing of the HCV genome in mouse sera at 6 wpi revealed the sequence of the HCV-G4-KM long clone. Thus, the in vitro and in vivo results of this study indicate that the sequence of the HCV-G4-KM long RNA is that of an infectious clone.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Wen-ying Long ◽  
Guo-hua Zhao ◽  
Yao Wu

Kaposi’s sarcoma-associated herpesvirus (KSHV), an oncogenic virus, has two life cycle modes: the latent and lytic phases. KSHV lytic reactivation is important for both viral propagation and KSHV-induced tumorigenesis. The KSHV replication and transcription activator (RTA) protein is essential for lytic reactivation. Hesperetin, a citrus polyphenolic flavonoid, has antioxidant, anti-inflammatory, hypolipidemic, cardiovascular and anti-tumour effects. However, the effects of hesperetin on KSHV replication and KSHV-induced tumorigenesis have not yet been reported. Here, we report that hesperetin induces apoptotic cell death in BCBL-1 cells in a dose-dependent manner. Hesperetin inhibits KSHV reactivation and reduces the production of progeny virus from KSHV-harbouring cells. We also confirmed that HIF1α promotes the RTA transcriptional activities and lytic cycle-refractory state of KSHV-infected cells. Hesperetin suppresses HIF1α expression to inhibit KSHV lytic reactivation. These results suggest that hesperetin may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.


Cell Research ◽  
2021 ◽  
Author(s):  
Gang Xu ◽  
Ying Li ◽  
Shengyuan Zhang ◽  
Haoran Peng ◽  
Yunyun Wang ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the ongoing global pandemic that poses substantial challenges to public health worldwide. A subset of COVID-19 patients experience systemic inflammatory response, known as cytokine storm, which may lead to death. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important mediator of inflammation and cell death. Here, we examined the interaction of RIPK1-mediated innate immunity with SARS-CoV-2 infection. We found evidence of RIPK1 activation in human COVID-19 lung pathological samples, and cultured human lung organoids and ACE2 transgenic mice infected by SARS-CoV-2. Inhibition of RIPK1 using multiple small-molecule inhibitors reduced the viral load of SARS-CoV-2 in human lung organoids. Furthermore, therapeutic dosing of the RIPK1 inhibitor Nec-1s reduced mortality and lung viral load, and blocked the CNS manifestation of SARS-CoV-2 in ACE2 transgenic mice. Mechanistically, we found that the RNA-dependent RNA polymerase of SARS-CoV-2, NSP12, a highly conserved central component of coronaviral replication and transcription machinery, promoted the activation of RIPK1. Furthermore, NSP12 323L variant, encoded by the SARS-CoV-2 C14408T variant first detected in Lombardy, Italy, that carries a Pro323Leu amino acid substitution in NSP12, showed increased ability to activate RIPK1. Inhibition of RIPK1 downregulated the transcriptional induction of proinflammatory cytokines and host factors including ACE2 and EGFR that promote viral entry into cells. Our results suggest that SARS-CoV-2 may have an unexpected and unusual ability to hijack the RIPK1-mediated host defense response to promote its own propagation and that inhibition of RIPK1 may provide a therapeutic option for the treatment of COVID-19.


2021 ◽  
Author(s):  
Huawei Xia ◽  
Zeming Zhang ◽  
Fuping You

Murine hepatitis virus strain A59 (MHV-A59) belongs to the β-coronavirus and is considered as a representative model for studying coronavirus infection. MHV-A59 was shown to induce pyroptosis, apoptosis and necroptosis of infected cells, especially the murine macrophages. However, whether ferroptosis, a recently identified form of lytic cell death, was involved in the pathogenicity of MHV-A59, is unknown. Here, we demonstrate inhibiting ferroptosis suppresses MHV-A59 infection. MHV-A59 infection upregulates the expression of Acsl1, a novel ferroptosis inducer. MHV-A59 upregulates Acsl1 expression depending on the NF-kB activation, which is TLR4-independent. Ferroptosis inhibitor inhibits viral propagation, inflammatory cytokines release and MHV-A59 infection induced cell syncytia formation. ACSL1 inhibitor Triacsin C suppresses MHV-A59 infection induced syncytia formation and viral propagation. In vivo administration of liproxstatin-1 ameliorates lung inflammation and tissue injuries caused by MHV-A59 infection. Collectively, these results indicate that ferroptosis inhibition protects hosts from MHV-A59 infection. Targeting ferroptosis may serves as a potential treatment approach for dealing with hyper-inflammation induced by coronavirus infection.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fanyun Kong ◽  
Qi Li ◽  
Fulong Zhang ◽  
Xiaocui Li ◽  
Hongjuan You ◽  
...  

Sirtuins (SIRTs) are well-known histone deacetylases that are capable of modulating various cellular processes in numerous diseases, including the infection of hepatitis B virus (HBV), which is one of the primary pathogenic drivers of liver cirrhosis and hepatocellular carcinoma. Mounting evidence reveals that HBV can alter the expression levels of all SIRT proteins. In turn, all SIRTs regulate HBV replication via a cascade of molecular mechanisms. Furthermore, several studies suggest that targeting SIRTs using suitable drugs is a potential treatment strategy for HBV infection. Here, we discuss the molecular mechanisms associated with SIRT-mediated upregulation of viral propagation and the recent advances in SIRT-targeted therapy as potential therapeutic modalities against HBV infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiali Hu ◽  
Ruitao Lu ◽  
Yu Zhang ◽  
Wei Li ◽  
Qian Hu ◽  
...  

Abstract Background Oncolytic viruses (OVs) are considered a promising therapeutic alternative for cancer. However, OVs could activate the host innate immunity, then impair the viral propagation in tumor cells. In this study, we explored the effect of propranolol, a non-selective β-blocker, on the antitumor efficacy of T1012G virus in gastric cancer models. Methods The proliferation of gastric cancer cells treated with monotherapy or combination treatment was detected by CCK8 cell proliferation assay. The effect of propranolol was further evaluated by in vitro viral replication assays. In vivo tumor xenograft experiments were used to observe the effect of combination therapy on gastric cancer growth in mice. The expression levels of viral proteins and interferon responsive genes were detected in the gastric cancer cell lines treated with combined treatment by western blot. The impact of propranolol on IFN-α/β-mediated inhibition of viral propagation and the expression of antiviral gene PKR was detected by viral replication assays and western blot. Results Cell viability assay detected a 97.9% decrease of T1012G IC50 in HGC-27 when it was pretreated with propranolol along with a sevenfold increase of virus titers compared with T1012G only group (P < 0.001). Moreover, propranolol pretreatment caused sustained tumor regression (335.3 ± 36.92 mm3 vs. 1118 ± 210.0 mm3, P < 0.01) and enhanced the viral propagation (fourfold increase, P < 0.01) compared with T1012G only group. Propranolol pretreatment significantly enhanced the p-STAT3 (2.9-fold, P < 0.05) and suppressed p-PKR (65.94% ± 10.11%, P < 0.05) compared with T1012G only group. In addition, propranolol could counteract IFN-α/β-mediated inhibition of viral propagation (compared with IFNα: 5.1-fold, P < 0.001; IFNβ: 4.6-fold, P < 0.01) or enhancement of PKR activation (IFNα: 92.57% ± 1.77%, P < 0.001, IFNβ: 99.34% ± 0.13% decrease, P < 0.001). Conclusions In summary, β-blocker pretreatment could improve the propagation and therapeutic efficacy of T1012G in human gastric cancer by regulating STAT3-PKR signaling cascade, even in the presence of type I IFNs. These data support new strategies of improving the efficacy of OVs in gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document