Enumeration and viability of rare cells in a microfluidic disk via positive selection approach

2012 ◽  
Vol 429 (2) ◽  
pp. 116-123 ◽  
Author(s):  
Ken-Chao Chen ◽  
Yu-Cheng Pan ◽  
Chen-Lin Chen ◽  
Ching-Hung Lin ◽  
Chiun-Sheng Huang ◽  
...  
2000 ◽  
Vol 52 (6) ◽  
pp. 555-562 ◽  
Author(s):  
I. Nepomnaschy ◽  
G. Lombardi ◽  
P. Bekinschtein ◽  
P. Berguer ◽  
V. Francisco ◽  
...  

Diabetes ◽  
1994 ◽  
Vol 43 (1) ◽  
pp. 47-52 ◽  
Author(s):  
D. Bellgrau ◽  
J. M. Redd ◽  
K. S. Sellins

2020 ◽  
Vol 17 (5) ◽  
pp. 243-265 ◽  
Author(s):  
Jiandong Xie ◽  
Sa Xiao ◽  
Ying-Chang Liang ◽  
Li Wang ◽  
Jun Fang

2019 ◽  
Author(s):  
Sierra Bainter ◽  
Thomas Granville McCauley ◽  
Tor D Wager ◽  
Elizabeth Reynolds Losin

In this paper we address the problem of selecting important predictors from some larger set of candidate predictors. Standard techniques are limited by lack of power and high false positive rates. A Bayesian variable selection approach used widely in biostatistics, stochastic search variable selection, can be used instead to combat these issues by accounting for uncertainty in the other predictors of the model. In this paper we present Bayesian variable selection to aid researchers facing this common scenario, along with an online application (https://ssvsforpsych.shinyapps.io/ssvsforpsych/) to perform the analysis and visualize the results. Using an application to predict pain ratings, we demonstrate how this approach quickly identifies reliable predictors, even when the set of possible predictors is larger than the sample size. This technique is widely applicable to research questions that may be relatively data-rich, but with limited information or theory to guide variable selection.


Sign in / Sign up

Export Citation Format

Share Document