salmonella enterica
Recently Published Documents





2022 ◽  
Vol 186 ◽  
pp. 111831
Iolanda Nicolau-Lapeña ◽  
Ingrid Aguiló-Aguayo ◽  
Gloria Bobo ◽  
Inmaculada Viñas ◽  
Marina Anguera ◽  

Priyanka Jain ◽  
Rajlakshmi Viswanathan ◽  
Gourab Halder ◽  
Sulagna Basu ◽  
Shanta Dutta

We report draft whole-genome sequences of two multidrug-resistant Salmonella enterica serovar Senftenberg sequence type 14 strains resistant to ciprofloxacin, ceftriaxone, and/or azithromycin, which were isolated from neonatal stool and goat meat in Kolkata, India. The genome characteristics, as well as the antimicrobial resistance genes, plasmid types, and integrons, are presented in this report.

Annie Ouyang ◽  
Kendall M. Gasner ◽  
Stephanie L. Neville ◽  
Christopher A. McDevitt ◽  
Elaine R. Frawley

Transition metal cations are required for the function of many proteins but can mediate toxicity when present in excess. Identifying transporters that facilitate metal ion export, the conditions under which they are expressed, and the role they play in bacterial physiology is an evolving area of interest for environmental and pathogenic organisms.

N. E. Ballesteros-Nova ◽  
S. Sánchez ◽  
J. L. Steffani ◽  
L. C. Sierra ◽  
Z. Chen ◽  

Salmonella enterica (SE) can survive in surface waters (SuWa) and the role of non-host environments in its transmission has acquired increasing relevance. In this study, we conducted comparative genomic analyses of 172 SE isolates collected from SuWa across three months in six states of central Mexico during 2019. SE transmission dynamics were assessed using 87 experimental and 112 public isolates from Mexico collected during 2002-2019. We also studied genetic relatedness between SuWa isolates and human clinical strains collected in North America during 2005-2020. Among experimental isolates, we identified 41 SE serovars and 56 multi-locus sequence types (ST). Predominant serovars were Senftenberg (n=13), Meleagridis, Agona, and Newport (n=12 each), Give (n=10), Anatum (n=8), Adelaide (n=7), and Infantis, Mbandaka, Ohio and Typhimurium (n=6 each). We observed a high genetic diversity in the sample under study, as well as clonal dissemination of strains across distant regions. Some of these strains are epidemiologically important (ST14, ST45, ST118, ST132, ST198, and ST213), and were genotypically close to those involved in clinical cases in North America. Transmission network analysis suggests that SuWa are a relevant source of SE (0.7 source/hub ratio) and contributes to its dissemination as isolates from varied sources and clinical cases have SuWa isolates as common ancestors. Overall, the study shows SuWa act as reservoir of various SE serovars of public health significance. Further research is needed to better understand the mechanisms involved in SuWa contamination by SE, as well as develop interventions to contain its dissemination to food production settings. Study importance Surface waters are heavily used in food production worldwide. Several human pathogens can survive in these waters for long periods and disseminate to food production environments, contaminating our food supply. One of these pathogens is Salmonella enterica , a leading cause of foodborne infections, hospitalizations and deaths in many countries. This research demonstrates the role of surface waters as a vehicle for the transmission of Salmonella along food production chains. It also shows some strains circulating in surface waters are very similar to those implicated in human infections and harbor genes that confer resistance to multiple antibiotics, posing a risk to public health. The study contributes to expand our current knowledge on the ecology and epidemiology of Salmonella in surface waters.

2022 ◽  
Vol 4 (1) ◽  
Carla L. Schwan ◽  
Timothy J. Dallman ◽  
Peter W. Cook ◽  
Jessie Vipham

Salmonella enterica subspecies enterica serovar Corvallis (S. Corvallis) has been identified as a human pathogen and as a food contaminant. Diarrhoeal disease is a common diagnosis in tourists visiting Southeast Asia, often with unknown aetiology. However, numerous public health institutes have identified Salmonella as a common causative agent when consuming contaminated food and water. Genomic data from environmental isolates from a Cambodian informal market were uploaded to the National Center for Biotechnology Information (NCBI) platform, allowing the novel sequences to be compared to global whole-genome sequence archives. The comparison revealed that two human clinical isolates from England and four of the environmental isolates were closely related, with an average single nucleotide polymorphism (SNP) difference of 1 (0–3 SNPs). A maximum-likelihood tree based on core SNPs was generated comparing the 4 isolates recovered from a Cambodian informal market with 239 isolates of S. Corvallis received from routine surveillance of human salmonellosis in England and confirmed the close relationship. In addition, the environmental isolates clustered into a broader phylogenetic group within the S. Corvallis population containing 68 additional human isolates, of which 42 were from patients who reported recent international travel, almost exclusively to Southeast Asia. The environmental isolates of S. Corvallis isolated from an informal market in Cambodia are concerning for public health due to their genetic similarity to isolates (e.g. clinical isolates from the UK) with known human virulence and pathogenicity. This study emphasizes the benefits of global and public data sharing of pathogen genomes.

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 161
Luisa D’Angelo ◽  
Domenico Vecchio ◽  
Debora Cozza ◽  
Immacolata La Tela ◽  
Maria Rosaria Carullo ◽  

This case report describes for the first-time cases of severe gastroenteritis in water buffalo calves due to a new serovar of Salmonella enterica. The study was carried out on fecal matrix collected from live water buffalo calves that showed profuse diarrhea, severe dehydration and fever, exhibiting a systemic course. Culture and molecular investigations identified the pathogens isolated from intestinal contents as two Salmonella serovars, Salmonella enterica enterica O:35 and a new serovar of Salmonella enterica. The isolates showed multi-drug resistance. Timely diagnosis associated with a targeted antimicrobial treatment were found to be sufficient for the survival and recovery of the infected animals. Herd vaccines prepared from isolated pathogens were used to prevent further deaths of the calves.

2022 ◽  
Vol 12 ◽  
Haoran Zhang ◽  
Ying Xiang ◽  
Yong Huang ◽  
Beibei Liang ◽  
Xuebin Xu ◽  

With the rapid emergence of plasmid-mediated colistin resistance gene mcr-1, the increased resistance of Salmonella has attracted extensive attention. This study reports on 11 multidrug-resistant Salmonella enterica serovar Typhimurium strains harboring mcr-1 in China. They all presented resistance to colistin, and additionally, one that was isolated from a child’s stool sample was also resistant to ceftriaxone and azithromycin. We screened 1454 strains of Salmonella for mcr-1 gene through PCR, and these strains are all preserved in our laboratory. Antimicrobial sensitivity analysis was carried out for the screened mcr-1 positive strains. Genetic polymorphism analysis of S. Typhimurium was performed by using the Pulsed-Field Gel Electrophoresis (PFGE). The plasmids harboring mcr-1 were identified by S1-PFGE and southern blotting. Plasmid conjugation assays were used to analyze the transferability of colistin resistance. The plasmids harboring mcr-1 were characterized by sequencing and bioinformatic analysis. Eleven S. Typhimurium strains harboring mcr-1 with colistin resistance (MICs 4μg/ml) were detected, which were isolated from children and pig offal in China. All of them were multidrug-resistant strains. PFGE results revealed that the strains isolated from different samples or locations have identical genotypes. S1-PFGE and southern blotting experiments showed that three plasmids of different sizes (33, 60, and 250 kb) all carried the mcr-1 gene. The plasmid conjugation assays revealed that Salmonella acquired mcr-1 harboring plasmids by horizontal transfer. Sequencing and plasmid type analysis revealed that these plasmids were types IncX4, IncI2, and IncHI2. Among them, IncX4 and IncI2 plasmids had extremely similar backbones and contained one resistant gene mcr-1. IncHI2 plasmid contained multiple resistant genes including blaCTX–M, oqxB, sul, aph, aadA, and blaTEM. We identified 11 mcr-1 harboring S. Typhimurium strains in China and described their characteristics. Our findings indicate that the mcr-1 gene can effectively spread among intestinal bacteria by horizontal transfer of three types of plasmids. Moreover, the IncHI2 plasmid can also mediate the transfer of other drug resistance genes. These results reveal that constant surveillance of mcr-1 harboring S Typhimurium is imperative to prevent the spread of colistin resistance.

Sign in / Sign up

Export Citation Format

Share Document