scholarly journals Characterization of hydrophilic interaction liquid chromatography retention by a linear free energy relationship. Comparison to reversed- and normal-phase retentions

2019 ◽  
Vol 1092 ◽  
pp. 132-143 ◽  
Author(s):  
Xavier Subirats ◽  
Michael H. Abraham ◽  
Martí Rosés
2004 ◽  
Vol 82 (8) ◽  
pp. 1294-1303 ◽  
Author(s):  
Vanessa Renée Little ◽  
Keith Vaughan

1-Methylpiperazine was coupled with a series of diazonium salts to afford the 1-methyl-4-[2-aryl-1-diazenyl]piperazines (2), a new series of triazenes, which have been characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis. Assignment of the chemical shifts to specific protons and carbons in the piperazine ring was facilitated by comparison with the chemical shifts in the model compounds piperazine and 1-methylpiperazine and by a HETCOR experiment with the p-tolyl derivative (2i). A DEPT experiment with 1-methylpiperazine (6) was necessary to distinguish the methyl and methylene groups in 6, and a HETCOR spectrum of 6 enabled the correlation of proton and carbon chemical shifts. Line broadening of the signals from the ring methylene protons is attributed to restricted rotation around the N2-N3 bond of the triazene moiety in 2. The second series of triazenes, the ethyl 4-[2-phenyl-1-diazenyl]-1-piperazinecarboxylates (3), have been prepared by similar diazonium coupling to ethyl 1-piperazinecarboxylate and were similarly characterized. The chemical shifts of the piperazine ring protons are much closer together in series 3 than in series 2, resulting in distortion of the multiplets for these methylenes. It was noticed that the difference between these chemical shifts in 3 exhibited a linear free energy relationship with the Hammett substituent constants for the substituents in the aryl ring. Key words: triazene, piperazine, diazonium coupling, NMR, HETCOR, linear free energy relationship.


Sign in / Sign up

Export Citation Format

Share Document