Synthesis and characterization of a series of 1-methyl-4-[2-aryl-1-diazenyl]piperazines and a series of ethyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates

2004 ◽  
Vol 82 (8) ◽  
pp. 1294-1303 ◽  
Author(s):  
Vanessa Renée Little ◽  
Keith Vaughan

1-Methylpiperazine was coupled with a series of diazonium salts to afford the 1-methyl-4-[2-aryl-1-diazenyl]piperazines (2), a new series of triazenes, which have been characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis. Assignment of the chemical shifts to specific protons and carbons in the piperazine ring was facilitated by comparison with the chemical shifts in the model compounds piperazine and 1-methylpiperazine and by a HETCOR experiment with the p-tolyl derivative (2i). A DEPT experiment with 1-methylpiperazine (6) was necessary to distinguish the methyl and methylene groups in 6, and a HETCOR spectrum of 6 enabled the correlation of proton and carbon chemical shifts. Line broadening of the signals from the ring methylene protons is attributed to restricted rotation around the N2-N3 bond of the triazene moiety in 2. The second series of triazenes, the ethyl 4-[2-phenyl-1-diazenyl]-1-piperazinecarboxylates (3), have been prepared by similar diazonium coupling to ethyl 1-piperazinecarboxylate and were similarly characterized. The chemical shifts of the piperazine ring protons are much closer together in series 3 than in series 2, resulting in distortion of the multiplets for these methylenes. It was noticed that the difference between these chemical shifts in 3 exhibited a linear free energy relationship with the Hammett substituent constants for the substituents in the aryl ring. Key words: triazene, piperazine, diazonium coupling, NMR, HETCOR, linear free energy relationship.

2011 ◽  
Vol 34 (19) ◽  
pp. 2639-2644 ◽  
Author(s):  
Lucie Janečková ◽  
Květa Kalíková ◽  
Jiří Vozka ◽  
Daniel W. Armstrong ◽  
Zuzana Bosáková ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Anpalaki J. Ragavan ◽  
Dean V. Adams

A linear free energy relationship was developed to predict the Gibbs free energies of formation (, in kJ/mol) of crystalline titanate (M2Ti2O7) and zirconate (M2Zr2O2) pyrochlore families of trivalent lanthanides and actinides (M3+) from the Shannon-Prewitt radius of M3+ in a given coordination state (, in nm) and the nonsolvation contribution to the Gibbs free energy of formation of the aqueous M3+ (). The linear free energy relationship for M2Ti2O7 is expressed as . The linear free energy relationship for M2Zr2O7 is expressed as . Estimated free energies were within 0.73 percent of those calculated from the first principles for M2Ti2O7 and within 0.50 percent for M2Zr2O7. Entropies of formation were estimated from constituent oxides (J/mol), based on an empirical parameter defined as the difference between the measured entropies of formation of the oxides and the measured entropies of formation of the aqueous cation.


1983 ◽  
Vol 38 (12) ◽  
pp. 1337-1341
Author(s):  
J. Zechner ◽  
N. Getoff ◽  
I. Timtcheva ◽  
F. Fratev ◽  
St. Minchef

Abstract Flash photolysis of a series of 2-phenylindandione-1,3 derivatives substituted in the 4′ position results in both the formation of stable benzylidenephthalides and of phenylindan-1,3-dion-2-yl radicals. The u. v. absorption maxima of these radicals are dependent on the solvent and show a bathochromic shift upon substitution. These substitution effects were correlated by means of a linear free energy relationship. Attempts were made to draw conclusions concerning the changes in the gap of the states involved and their curvature due to substitution.


2008 ◽  
Vol 27 (9) ◽  
pp. 1130-1139 ◽  
Author(s):  
Laura M. Sprunger ◽  
Jennifer Gibbs ◽  
William E. Acree ◽  
Michael H. Abraham

Sign in / Sign up

Export Citation Format

Share Document