Composition dependence of tracer diffusion coefficients in Fe–Ga alloys: A case study by a tracer-diffusion couple method

2021 ◽  
Vol 203 ◽  
pp. 116446
Author(s):  
G.M. Muralikrishna ◽  
B. Tas ◽  
N. Esakkiraja ◽  
V.A. Esin ◽  
K.C. Hari Kumar ◽  
...  
1994 ◽  
Vol 369 ◽  
Author(s):  
Sanjeev Aggarwal ◽  
Rudiger Dieckmann

AbstractCation diffusion in the spinel solid solution (Fe1-xTix)3-δO4 (0≤ x ≤ 0.3) was investigated at 1200 ºC as a function of oxygen activity, aO2 and cationic composition, x. At different cationic compositions, cation tracer diffusion coefficients, D*Me of Me = Fe and Ti were measured as a function of oxygen activity. Plots of log DMe vs. loga0 show V-shaped curves, indicating that different types of point defects prevail at high anc low oxygen activities. Thermogravimetric experiments were conducted, using a high resolution microbalance, to determine the deviation from stoichiometry in (Fe1-xTix)3-δO4 at 1200 °C. δversus log aO2 curves are S-shaped. An analysis of the oxygen activity dependences of thecation diffusion coefficients and the deviation from stoichiometry with regardto the point defect structure suggests that at high oxygen activities cation vacancies are the predominant defects governing the deviation from stoichiometry and the diffusion ofcations. At low oxygen activities, and at small values of x, cation interstitials determine the deviation from stoichiometry, while they dominate for 0 ≤ x ≤ 0.3 inthe cation diffusion.


Sign in / Sign up

Export Citation Format

Share Document