Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species

2004 ◽  
Vol 25 (3) ◽  
pp. 187-195 ◽  
Author(s):  
I Aranda ◽  
F Pardo ◽  
L Gil ◽  
J.A Pardos
2016 ◽  
Vol 64 (4) ◽  
Author(s):  
Eduardo Chacón ◽  
Juan Manuel López-Ley ◽  
Gerardo Ávalos

Successful forest restoration in tropical environments is limited by the paucity of studies on the initial establishment and early survival requirements of seedlings of most native tropical tree species under disturbed conditions. Here, we evaluated the initial growth responses and the regeneration potential of seedlings of five tree species native to Costa Rica (Hasseltia floribunda, Inga densiflora, Persea americana, Tapirira mexicana and Trichilia pittieri). Seedlings were grown in secondary forests and adjacent open pastures under contrasting conditions of light availability. We quantified seedling growth, survival and herbivory from August 2010 to August 2011 on a monthly basis, and measured differences in leaf mass per area (LMA) at the end of the experiment. We found significant variation in growth responses between the understory of secondary forests and pastures. Growth in height was highest in pastures across all species, with I. densiflora, P. americana and T. mexicana showing the most striking differences. In contrast, H. floribunda and T. pittieri did not show differences in diameter growth between environments. Except for T. mexicana, herbivory increased throughout the experiment in all the species. Herbivory increased faster in pastures for H. floribunda and T. pittieri and showed higher rates in the forest understory for I. densiflora and P. americana. Seedling survival showed significant differences for all species across environments. Survival of H. floribunda and I. densiflora was higher in secondary forests, whereas the other species showed higher survival in pastures. Leaf mass per area showed higher values in the forest understory across all species. Due to their rapid growth and high survival, I. densiflora and T. mexicana showed great potential to restore abandoned pastures and secondary forests. Increasing our knowledge on the response of seedlings under disturbed conditions in tropical ecosystems is critical for improving the restoration of altered environments by matching the ecological amplitude of native species with specific environmental conditions


2006 ◽  
Vol 84 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Yoshiyuki Miyazawa ◽  
Kihachiro Kikuzawa

Photosynthetic traits of the evergreen broadleafed species Camellia japonica L. and Quercus glauca Thunb. were continuously investigated during autumn and winter using saplings that grew in different light environments (gap, deciduous canopy understory, and evergreen canopy understory) in a temperate forest. Light-saturated rates of net photosynthesis in midwinter and spring were lower than those in autumn. Photosynthetic capacity, scaled to a common leaf temperature of 25 °C, increased or remained stable after autumn and then decreased in spring in most leaves. Photosynthetic traits per unit leaf area were different among leaves in different light environments of both Camellia and Quercus during most periods. However, photosynthetic traits per unit leaf mass did not differ among leaves in different light environments, suggesting that differences in photosynthetic traits were mainly due to different leaf mass per area among leaves. Photosynthetic rates under light availability typical in the environment were lower in winter than in autumn in leaves in the sun in a gap but were not different in leaves in the shade under evergreen canopy trees. Thus, the importance of winter carbon gain for annual carbon gain is small in leaves in a gap but is large in leaves under evergreen canopy trees.


Sign in / Sign up

Export Citation Format

Share Document