net photosynthesis
Recently Published Documents


TOTAL DOCUMENTS

1195
(FIVE YEARS 219)

H-INDEX

57
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Kai Luo ◽  
Xiaoting Yuan ◽  
Chen Xie ◽  
Shanshan Liu ◽  
Ping Chen ◽  
...  

Insufficient and unbalanced biomass supply inhibited soybean [Glycine max (L.) Merr.] yield formation in the maize-soybean relay strip intercropping (IS) and monoculture soybean (SS). A field experiment was conducted to explore the soybean yield increase mechanism of DA-6 in IS and SS treatments. In this 2-year experiment, compact maize “Denghai 605” and shade-tolerant soybean “Nandou 25” were selected as cultivated materials. DA-6 with four concentrations, i.e., 0 mg/L (CK), 40 mg/L (D40), 60 mg/L (D60), and 80 mg/L (D80), were sprayed on soybean leaves at the beginning of flowering stage of soybean. Results showed that DA-6 treatments significantly (p < 0.05) increased soybean grain yield, and the yield increase ratio was higher in IS than SS. The leaf area index values and net photosynthesis rate of IS peaked at D60 and were increased by 32.2–49.3% and 24.1–27.2% compared with the corresponding CK. Similarly, DA-6 treatments increased the aboveground dry matter and the amount of soybean dry matter accumulation from the R1 stage to the R8 stage (VDMT) and highest at D60 both in IS and SS. D60 increased the VDMT by 29.0–47.1% in IS and 20.7–29.2% in SS. The TRG at D60 ranged 72.4–77.6% in IS and 61.4–62.5% in SS. The MDA content at D60 treatment was decreased by 38.3% in IS and 25.8% in SS. The active grain-filling day in IS was about 7 days longer than in SS. In D60 treatment, the Vmean and Vmax increased by 6.5% and 6.5% in IS and 5.7% and 4.3% in SS compared with the corresponding CK. Although the pod number and hundred-grain weight were significantly (p < 0.05) increased by DA-6 treatments, the grains per pod were maintained stable. The pod number and hundred-grain weight were increased by 30.1–36.8% and 4.5–6.7% in IS and 6.3–13% and 3.6–5.6% in SS. Thus, the grain yield at D60 was increased by 36.7–38.4% in IS and 21.7–26.6% in SS. DA-6 treatments significantly (p < 0.05) increased soybean grain yield and peaked D60 treatments both in IS and SS.


2021 ◽  
Vol 215 (12) ◽  
pp. 59-76
Author(s):  
Anna Lyubimova ◽  
Dmitriy Eremin

Abstract. The purpose is to study the varietal characteristics of the photosynthetic efficiency of oats when applying fertilizers in Western Siberia. Methods. The research was carried out on an experimental field located in the northern forest-steppe of the Trans-Urals. Photosynthetic potential and net productivity of photosynthesis were determined by the Nichiporovich’s method. Results. The nature of the formation of the assimilation surface and the accumulation of biomass of oat varieties Otrada, Talisman and Foma at different levels of mineral nutrition was studied. The photosynthetic potential and the net productivity of photosynthesis are calculated. The share of the influence of weather conditions, agrophone and variety on the studied indicators is determined. The Foma variety was characterized by maximum leafiness, compared to the Talisman and Otrada. On a natural agrophone, its assimilation surface in the sweeping phase reached 36.0 ± 5.5 thousand m2, at Otrada and Talisman – 28.1 and 24.0 thousand m2 per 1 ha of sowing. A very strong variability of the leaf surface area in Otrada was revealed (Cv = 24 %). The use of mineral fertilizers enhances the development of the leaf apparatus by 44–50 % and causes competition between oat plants. A close positive correlation was revealed between the leaf area in the sweeping phase and yield (r = 0.72). The area of the assimilation surface of oats is affected by: weather conditions – 37 %; nutrition level – 30 % and variety – 25 %. It was found that the Otrada and Foma varieties have the same accumulation dynamics and form the maximum photosynthetic biomass by the sweeping phase. The nature of biomass accumulation depends on weather conditions by 39 %; on mineral fertilizers by 29 % and on the genotype of the variety by 17 %. The productivity of the studied varieties is formed by increasing the assimilation surface, rather than increasing the efficiency of photosynthesis. Scientific novelty. For the first time, the photosynthetic potential was determined and the efficiency of the net photosynthesis productivity of oat varieties of the Tyumen selection was revealed. The share of the influence of various factors in the formation of the oat crop in the conditions of the Northern Trans-Urals has been established.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1299
Author(s):  
Luca Regni ◽  
Daniele Del Buono ◽  
Begoña Miras-Moreno ◽  
Biancamaria Senizza ◽  
Luigi Lucini ◽  
...  

Biostimulants are becoming increasingly popular in agriculture for their ability to induce beneficial effects in crops, paving the way towards the identification of new materials with biostimulant potential. This study evaluated the potential of different concentrations of an aqueous extract (0.25%, 0.50%, and 1.00%, dry weight/water volume, respectively) obtained from duckweed (Lemna minor L.) to stimulate olive plants. Leaf net photosynthesis (Pn), leaf transpiration rate (E), stomatal conductance (gs), sub-stomatal CO2 concentration (Ci), chlorophyll content and other plant growth parameters were investigated. As a result, the extract improved Pn, gs, Ci, chlorophyll content and plant biomass production (leaf fresh and dry weight). Furthermore, the duckweed extract generally increased the uptake of nitrogen (N), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe) and zinc (Zn), while it did not influence the content of sodium (Na), manganese (Mn) and copper (Cu). The untargeted metabolomic profiling of the extract revealed the presence of signalling compounds (including phytohormones), phenolics and glutathione. Such broad diversity of bioactives may support the stimulatory potential observed in olive. In summary, this study revealed for the first time that duckweed could be seen as a promising species to obtain extracts with biostimulant properties in olive trees.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2808
Author(s):  
Dennis Dannehl ◽  
Hans-Peter Kläring ◽  
Uwe Schmidt

Concepts of semi-closed greenhouses can be used to save energy, whereas their technical equipment often causes a decrease in the light received by the plants. Nevertheless, higher yields are achieved, which are presumably triggered by a higher CO2 concentration in the greenhouse and associated higher photosynthesis because of the technical cooling and the longer period of closed ventilation. Therefore, we examined the effects of photosynthetic photon flux density (PPFD) and CO2 concentration on plant photosynthesis and transpiration in tomato using a multiple cuvette gas exchange system. In a growth chamber experiment, we demonstrated that a light-mediated reduction in photosynthesis can be compensated or even overcompensated for by rising CO2 concentration. Increasing the CO2 concentration from 400 to 1000 µmol mol−1 within the PPFD range from 303 to 653 µmol m−2 s−1 resulted in an increase in net photosynthesis of 51%, a decrease in transpiration of 5 to 8%, and an increase in photosynthetic water use efficiency of 60%. Estimations showed that light reductions of 10% can be compensated for via increasing the CO2 concentration by about 100 µmol mol−1 and overcompensated for by about 40% if CO2 concentration is kept at 1000 instead of 400 µmol mol−1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rana Roy ◽  
M. Golam Mahboob ◽  
Carmen Arena ◽  
Md. Abdul Kader ◽  
Shirin Sultana ◽  
...  

Surface mining is a critical anthropogenic activity that significantly alters the ecosystem. Revegetation practices are largely utilized to compensate for these detrimental impacts of surface mining. In this study, we investigated the effects of five water (W) regimes [W40: 40%, W48: 48%, W60: 60%, W72: 72%, and W80: 80% of field capacity (FC)], five nitrogen (N) (N0: 0, N24: 24, N60: 60, N96: 96, and N120: 120 mg kg−1 soil), and five phosphorus (P) fertilizer doses (P0: 0, P36: 36, P90: 90, P144: 144, and P180: 180 mg kg−1 soil) on morpho-physiological and biochemical parameters of Ammopiptanthus mongolicus plants to assess the capability of this species to be used for restoration purposes. The results showed that under low W-N resources, A. mongolicus exhibited poor growth performance (i.e., reduced plant height, stem diameter, and dry biomass) in coal-degraded spoils, indicating that A. mongolicus exhibited successful adaptive mechanisms by reducing its biomass production to survive long in environmental stress conditions. Compared with control, moderate to high W and N-P application rates greatly enhanced the net photosynthesis rates, transpiration rates, water-use efficiency, chlorophyll (Chl) a, Chl b, total Chl, and carotenoid contents. Under low-W content, the N-P fertilization enhanced the contents of proline and soluble sugar, as well as the activities of superoxide dismutase, catalase, and peroxidase in leaf tissues, reducing the oxidative stress. Changes in plant growth and metabolism in W-shortage conditions supplied with N-P fertilization may be an adaptive strategy that is essential for its conservation and restoration in the desert ecosystem. The best growth performance was observed in plants under W supplements corresponding to 70% of FC and N and P doses of 33 and 36 mg kg−1 soil, respectively. Our results provide useful information for revegetation and ecological restoration in coal-degraded and arid-degraded lands in the world using endangered species A. mongolicus.


2021 ◽  
Author(s):  
Dadong Li ◽  
El-Hadji Malick Cisse ◽  
Luyao Guo ◽  
Juan Zhang ◽  
Lingfeng Miao ◽  
...  

Abstract Cleistocalyx operculatus and Syzygium cumini possess a certain waterlogging tolerance. However, the comparable and adaptable strategies to waterlogging stress between these two species on the basis of waterlogging adventitious root (AR) regulation were still unclear. In this study, the plant performances in response to AR regulation based on AR removal and exogenous hormone application were investigated in terms of plant morphology, physiology, photosynthesis, and AR traits. Results showed that C. operculatus possesses stronger waterlogging tolerance than S. cumini based on waterlogging tolerance coefficient, which is mainly due to the higher root biomass, root porosity, and length and activity of ARs, and shorter emergence time of ARs in C. operculatus than in S. cumini. The AR-R treatment increased activity and porosity of primary root, and induce a large amount of up-vertical ARs from the primary root systems in C. operculatus, while similar adaptive morphological changes in roots did not occur in AR-R treated S. cumini. Exogenous ABA application had better effects on alleviating waterlogging damages than exogenous IAA in balancing endogenous hormones (ABA and ZR), promoting ARs development (porosity and activity, and the ratio of cortex area to stele area), improving photosynthesis process and antioxidant system (soluble protein, free proline, and peroxidase). Moreover, under waterlogging conditions, exogenous ABA application induced greater increases in net photosynthesis rate (A), stomatal conductance (gs), chlorophyll b (Chl b), and carotenoid (Caro) in S. cumini than in C. operculatus, which suggested that S. cumini responded more positively and efficiently to exogenous ABA application than C. operculatus under waterlogging conditions. Thus, the findings provided new insights into the waterlogging adaptable strategies in waterlogging tolerant woody species on the basis of ARs, and could provide scientific guidance for the application of these two species during revegetation activities in wetlands.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 543
Author(s):  
Jesús Antonio Rivera-Avilez ◽  
Alfredo Jarma-Orozco ◽  
Marcelo F. Pompelli

The Stevia market is estimated to be USD 1.14 billion in 2028 due to its acceptance in the food and beverage industry. Stevia rebaudiana and its two more relevant edulcorants: stevioside (St) and rebaudioside A (Reb-A) can reach 450-fold sweeter than sucrose. The species is considered a long night plant, promoting flowering and shortening vegetative growth. Thus, to increase the leaf area and St and Reb-A increase, we broke the long night with a short light pulse, here called night interruption (NI). In this study, three NI times and two S. rebaudiana genotypes were tested to promote larger vegetative growth, flowering delay, and higher synthesis of steviol glycosides (SvGly). The main goal of this study was to demonstrate that NI increased net photosynthesis (9% to 20%), the internode length (59%), the leaf area (25%), while delays in 4 to 10 days of the flowering phase, impacting in 17% to 25% more St and Reb-A, respectively. Here we describe an inexpensive flowering delay, elongation of vegetative growth, allowing extended harvesting, which could yield four to five annual harvesting of leaves, increasing the production in 21% to 24% more St and Reb-A yield (kg ha−1).


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 517
Author(s):  
Stefania Toscano ◽  
Antonio Ferrante ◽  
Daniela Romano ◽  
Alessandro Tribulato

Effects of drought and aerosol stresses were studied in a factorial experiment based on a Randomized Complete Design with triplicates on two ornamental shrubs. Treatments consisted of four levels of water container (40%, 30%, 20%, and 10% of water volumetric content of the substrate) and, after 30 days from experiment onset, three aerosol treatments (distilled water and 50% and 100% salt sea water concentrations). The trial was contextually replicated on two species: Callistemon citrinus (Curtis) Skeels and Viburnum tinus L. ‘Lucidum’. In both species, increasing drought stress negatively affected dry biomass, leaf area, net photosynthesis, chlorophyll a fluorescence, and relative water content. The added saline aerosol stress induced a further physiological water deficit in plants of both species, with more emphasis on Callistemon. The interaction between the two stress conditions was found to be additive for almost all the physiological parameters, resulting in enhanced damage on plants under stress combination. Total biomass, for effect of combined stresses, ranged from 120.1 to 86.4 g plant−1 in Callistemon and from 122.3 to 94.6 g plant−1 in Viburnum. The net photosynthesis in Callistemon declined by the 70% after 30 days in WC 10% and by the 45% and 53% in WC 20% and WC 10% respectively after 60 days. In Viburnum plants, since the first measurement (7 days), a decrease of net photosynthesis was observed for the more stressed treatments (WC 20% and WC 10%), by 57%. The overall data suggested that Viburnum was more tolerant compared the Callistemon under the experimental conditions studied.


2021 ◽  
Vol 9 (11) ◽  
pp. 2398
Author(s):  
Ibraheem Olamide Olasupo ◽  
Qiuju Liang ◽  
Chunyi Zhang ◽  
Md Shariful Islam ◽  
Yansu Li ◽  
...  

Agronomic biofortification of horticultural crops using plant growth-promoting rhizobacteria (PGPR) under crop residue incorporation systems remains largely underexploited. Bacillus subtilis (B1), Bacillus laterosporus (B2), or Bacillus amyloliquefaciens (B3) was inoculated on soil containing chili residue, while chili residue without PGPR (NP) served as the control. Two hybrid long cayenne peppers, succeeding a leaf mustard crop were used in the intensive cultivation study. Net photosynthesis, leaf stomatal conductance, transpiration rate, photosynthetic water use efficiency, shoot and root biomass, and fruit yield were evaluated. Derivatives of folate, minerals, and nitrate contents in the pepper fruits were also assessed. B1 elicited higher net photosynthesis and photosynthetic water use efficiency, while B2 and B3 had higher transpiration rates than B1 and NP. B1 and B3 resulted in 27–36% increase in pepper fruit yield compared to other treatments, whereas B3 produced 24–27.5% and 21.9–27.2% higher 5-methyltetrahydrofolate and total folate contents, respectively, compared to B1 and NP. However, chili residue without PGPR inoculation improved fruit calcium, magnesium, and potassium contents than the inoculated treatments. ‘Xin Xian La 8 F1’ cultivar had higher yield and plant biomass, fruit potassium, total soluble solids, and total folate contents compared to ‘La Gao F1.’ Agronomic biofortification through the synergy of Bacillus amyloliquefaciens and chili residue produced better yield and folate contents with a trade-off in the mineral contents of the greenhouse-grown long cayenne pepper.


Author(s):  
Hongyun Yao ◽  
Xiao-Yan Li ◽  
Cicheng Zhang ◽  
Pei Wang ◽  
Fangzhong Shi ◽  
...  

As regional heterogeneity on the Qinghai Tibetan Plateau (QTP), the “greening rate” between alpine steppe in the west and alpine meadow ecosystems in the east is difference during the past several decades. To investigate the difference, the net photosynthetic rate (An) and the supply (mesophyll conductance ( g), stomatal conductance ( g)) and demand (the maximum rates of Rubisco carboxylase activity ( V) and photosynthetic electron transport ( J)) for CO of three plants functional types (PFTs) were measured. Other functional traits and influencing factors were compared among ecosystems along the altitudinal gradients of QTP. The An of the PFTs was simulated under potential future conditions. At high altitudes, grass was found to maintain a relatively stable An by decreasing V, J, and g, while slightly increasing g, compared with that at a low altitude. The An of sedge and shrubs increased with rising V, J and g and g values, resulting in a large increment in the An at low altitudes. Grass seemed to be less sensitive to the environment by reducing the supply of and holding onto CO , while sedge and shrub increased both. Grass and sedge should be divided into two PFTs rather than remaining as one based on their opposite physiological and morphological functions in response to climate change. The ecosystem at 3600 m was transitional. C was likely to be a more dominant factor than T in affecting the An of grass. The order of rising An in PFTs was shrub > sedge > grass and the An of alpine meadow was found to increase more under the two future climate scenarios.


Sign in / Sign up

Export Citation Format

Share Document