Photosynthesis and physiological traits of evergreen broadleafed saplings during winter under different light environments in a temperate forest

2006 ◽  
Vol 84 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Yoshiyuki Miyazawa ◽  
Kihachiro Kikuzawa

Photosynthetic traits of the evergreen broadleafed species Camellia japonica L. and Quercus glauca Thunb. were continuously investigated during autumn and winter using saplings that grew in different light environments (gap, deciduous canopy understory, and evergreen canopy understory) in a temperate forest. Light-saturated rates of net photosynthesis in midwinter and spring were lower than those in autumn. Photosynthetic capacity, scaled to a common leaf temperature of 25 °C, increased or remained stable after autumn and then decreased in spring in most leaves. Photosynthetic traits per unit leaf area were different among leaves in different light environments of both Camellia and Quercus during most periods. However, photosynthetic traits per unit leaf mass did not differ among leaves in different light environments, suggesting that differences in photosynthetic traits were mainly due to different leaf mass per area among leaves. Photosynthetic rates under light availability typical in the environment were lower in winter than in autumn in leaves in the sun in a gap but were not different in leaves in the shade under evergreen canopy trees. Thus, the importance of winter carbon gain for annual carbon gain is small in leaves in a gap but is large in leaves under evergreen canopy trees.


2017 ◽  
Vol 37 (9) ◽  
pp. 1140-1150 ◽  
Author(s):  
Alec S. Baird ◽  
Leander D.L. Anderegg ◽  
Melissa E. Lacey ◽  
Janneke HilleRisLambers ◽  
Elizabeth Van Volkenburgh


New Forests ◽  
2019 ◽  
Vol 51 (5) ◽  
pp. 817-834 ◽  
Author(s):  
Linda K. Petersson ◽  
Magnus Löf ◽  
Anna M. Jensen ◽  
Daryl R. Chastain ◽  
Emile S. Gardiner

AbstractSprouting by woody plants can increase species resilience to disturbance and foster regeneration during periods with little recruitment from seed. Though sprouting often plays a critical role in oak forest regeneration, there is little information available on sprouting capacity and sprout physiology at the seedling stage, particularly for new germinants. This study compared sprouting capacity and sprout photosynthesis of shoot-clipped germinants of two temperate oaks established in contrasting light environments. We studied the North American Quercus alba and the European Q. robur, both are in the section Quercus and appear to share similar biological and ecological requirements. Sprouting capacity for both species was enhanced under high light availability (29% more sprouts per plant), a response not previously noted for oak germinants. Seedling sprouts acclimated to high light with a 34% decrease in leaf area ratio, a 56% increase in leaf mass per area, and a 49% increase in the light-saturated maximum photosynthetic rate. Though both species appeared similarly adapted to shoot loss, a greater sprouting capacity (29% more sprouts per plant) and plant-level net photosynthesis (73% higher) was observed for Q. robur, regardless of light environment. As naturally regenerated oak seedlings in forest understories often experience disturbance or stress resulting in shoot loss or die-back, our results highlight the importance of the light environment during early plant development. Our comparison of temperate oaks from different continents should facilitate exchange of successful stand regeneration practices within the range of temperate oak forests.



2019 ◽  
Vol 39 (9) ◽  
pp. 1551-1560 ◽  
Author(s):  
Kelsey A Martinez ◽  
Jason D Fridley ◽  
Riichi Oguchi ◽  
Masahiro Aiba ◽  
Kouki Hikosaka

Abstract Temperate forests are widely invaded by shade-tolerant shrubs and trees, including those of Eastern North America (ENA). However, it remains unknown whether these invaders are ‘preadapted’ for success in their new ranges due to unique aspects of their evolutionary history or whether selection due to enemy release or other postintroduction processes have driven rapid evolution in the invaded range. We sampled leaf traits of populations of woody understory invaders across light gradients in their native range in Japan and in their invaded ENA range to examine potential phenotypic shifts related to carbon gain and nitrogen use between ranges. We also measured leaf traits in three co-occurring ENA native shrub species. In their invaded range, invaders invested significantly less in leaf chlorophyll content (both per unit leaf mass and area) compared with native range populations of the same species, yet maintained similar rates of photosynthesis in low light. In addition, compared with ENA natives, ENA invaders displayed greater trait variation in response to increasing light availability (forest edges, gaps), giving them a potential advantage over ENA natives in a variety of light conditions. We conclude that, for this group of species, newly evolved phenotypes in the invaded range are more important than preadaptation for their success as shade-tolerant forest invaders.



2010 ◽  
Vol 56 (No. 3) ◽  
pp. 101-111 ◽  
Author(s):  
R. Gebauer ◽  
D. Volařík ◽  
T. Funda ◽  
I. Fundová ◽  
A. Kohutka ◽  
...  

Detailed research is necessary to better understand ecological adaptations of <I>Pinus pumila </I>(Pall.) Regel as a species, whose biological properties are vital for its survival. In the Svyatoi Nos Peninsula, three sites differing in altitude were selected. At all sites the growth form of <I>P. pumila</I> was determined. At the high and medium sites, the following parameters were measured: linear increment on terminal branches, leaf mass per area and the content of nitrogen per unit leaf area. Anatomical studies were carried out on shoots and four needle-year classes. It was found that needles were longer and narrower at the medium site when compared to the high site. Leaf mass per area was higher and a substantial increase in older needles occurred at the high site. Nitrogen content per unit leaf area served as an indicator of assimilation capacity and was higher at the high site. We can conclude that <I>P. pumila</I> has xeromorphic needles, higher assimilation capacity, better protection ability against pathogens and slower growth rate of terminal branches at the high site. Important is also a significant increment of the growth rate of terminal branches at the high site in recent years. Therefore, data obtained from sites at the upper forest limit are valuable in assessing the climate changes and are useful for the forest management practice in mountain areas.



2010 ◽  
Vol 37 (3) ◽  
pp. 215 ◽  
Author(s):  
Yoshiyuki Miyazawa ◽  
Kyoichi Otsuki

Light capture efficiency (Ea) and mass-based daily carbon gain (Amass) were compared between saplings of a deciduous tree species, Ficus erecta Thunb. and the co-occurring evergreen broadleaved tree species, Neolitsea aciculata (Bl.) Koidzumi, in a temperate forest in Japan. Using obtained data and an ecophysiological–architectural model, we calculated the Ea and Amass of each study sapling. We also analysed the response of Amass to changes in photosynthetic traits and Ea. Saplings of F. erecta had a higher Amass than N. aciculata, due to the high leaf area : aboveground mass ratio (LAR). The model calculation suggested that changes in photosynthetic traits and Ea changed Amass but did not modify the interspecific difference of Amass. In winter Amass was lower than that in the growing season due to low light availability during the short day lenght, suggesting modest importance of winter carbon gain for the evergreen saplings of N. aciculata. In conclusion, the advantage of this deciduous species for carbon gain over the co-occurring evergreen broadleaved saplings is not modified by acclimative changes in leaf physiology, crown architecture or prolonged photosynthesis period by evergreen broadleaved trees.





Author(s):  
Hammad A Khan ◽  
Yukiko Nakamura ◽  
Robert T Furbank ◽  
John R Evans

Abstract A growing number of leaf traits can be estimated from hyperspectral reflectance data. These include structural and compositional traits, such as leaf mass per area (LMA) and nitrogen and chlorophyll content, but also physiological traits such a Rubisco carboxylation activity, electron transport rate, and respiration rate. Since physiological traits vary with leaf temperature, how does this impact on predictions made from reflectance measurements? We investigated this with two wheat varieties, by repeatedly measuring each leaf through a sequence of temperatures imposed by varying the air temperature in a growth room. Leaf temperatures ranging from 20 °C to 35 °C did not alter the estimated Rubisco capacity normalized to 25 °C (Vcmax25), or chlorophyll or nitrogen contents per unit leaf area. Models estimating LMA and Vcmax25/N were both slightly influenced by leaf temperature: estimated LMA increased by 0.27% °C–1 and Vcmax25/N increased by 0.46% °C–1. A model estimating Rubisco activity closely followed variation associated with leaf temperature. Reflectance spectra change with leaf temperature and therefore contain a temperature signal.



Sign in / Sign up

Export Citation Format

Share Document