In situ hybridization and immunohistochemical localization of leptin hormone and leptin receptor in the seminal vesicle and prostate gland of adult rat

2012 ◽  
Vol 114 (3) ◽  
pp. 185-191 ◽  
Author(s):  
Ahmed Sayed-Ahmed ◽  
Ahmed Abd-Elmaksoud ◽  
Mohamed Elnasharty ◽  
Mohamed Abu El-Magd
Placenta ◽  
1999 ◽  
Vol 20 (8) ◽  
pp. 677-682 ◽  
Author(s):  
J Bodner ◽  
C.F Ebenbichler ◽  
H.J Wolf ◽  
E Müller-Holzner ◽  
U Stanzl ◽  
...  

1992 ◽  
Vol 68 (3) ◽  
pp. 756-766 ◽  
Author(s):  
T. M. Perney ◽  
J. Marshall ◽  
K. A. Martin ◽  
S. Hockfield ◽  
L. K. Kaczmarek

1. The gene for a mammalian Shaw K+ channel has recently been cloned and has been shown, by alternative splicing, to give rise to two different transcripts, Kv3.1 alpha and Kv3.1 beta. To determine whether these channels are associated with specific types of neurons and to determine whether or not the alternately spliced K+ channel variants are differentially expressed, we used ribonuclease (RNase) protection assays and in situ hybridization histochemistry to localize the specific subsets of neurons containing Kv3.1 alpha and Kv3.1 beta mRNAs in the adult and developing rat brain. 2. In situ hybridization histochemistry revealed a heterogeneous expression pattern of Kv3.1 alpha mRNA in the adult rat brain. Highest Kv3.1 alpha mRNA levels were expressed in the cerebellum. High levels of hybridization were also detected in the globus pallidus, subthalamus, and substantia nigra reticulata. Many thalamic nuclei, but in particular the reticular thalamic nucleus, hybridized well to Kv3.1 alpha-specific probes. A subpopulation of cells in the cortex and hippocampus, which by their distribution and number may represent interneurons, were also found to contain high levels of Kv3.1 alpha mRNA. In the brain stem, many nuclei, including the inferior colliculus and the cochlear and vestibular nuclei, also express Kv3.1 alpha mRNA. Low or undetectable levels of Kv3.1 alpha mRNA were found in the caudate-putamen, olfactory tubercle, amygdala, and hypothalamus. 3. Kv3.1 beta mRNA was also detected in the adult rat brain by both RNase protection assays and by in situ hybridization experiments. Although the beta splice variant is expressed at lower levels than the alpha species, the overall expression pattern for both mRNAs is similar, indicating that both splice variants co-expressed in the same neurons. 4. The expression of Kv3.1 alpha and Kv3.1 beta transcripts was examined throughout development. Kv3.1 alpha mRNA is detected as early as embryonic day 17 and then increases gradually until approximately postnatal day 10, when there is a large increase in the amount of Kv3.1 alpha mRNA. Interestingly, the expression of Kv3.1 beta mRNA only increases gradually during the developmental time frame examined. Densitometric measurements indicated that Kv3.1 alpha is the predominant splice variant found in neurons of the adult brain, whereas Kv3.1 beta appears to be the predominant species in embryonic and perinatal neurons. 5. Most of the neurons that express the Kv3.1 transcripts have been characterized electrophysiologically to have narrow action potentials and display high-frequency firing rates with little or no spike adaptation.(ABSTRACT TRUNCATED AT 400 WORDS)


Endocrinology ◽  
2000 ◽  
Vol 141 (7) ◽  
pp. 2703-2706 ◽  
Author(s):  
Anders Juréus ◽  
Matthew J. Cunningham ◽  
Molly E. McClain ◽  
Donald K. Clifton ◽  
Robert A. Steiner

Galanin-like peptide (GALP), which was recently isolated from the porcine hypothalamus, shares sequence homology with galanin and binds with high affinity to galanin receptors. To study the distribution and regulation of GALP-expressing cells in the brain, we cloned a 120 base-pair cDNA fragment of rat GALP and produced an antisense riboprobe. In situ hybridization for GALP mRNA was then performed on tissue sections throughout the forebrain of adult ovariectomized female rats. We found GALP mRNA-containing cells in the arcuate nucleus (Arc), caudal dorsomedial nucleus, median eminence and the pituitary. Because GALP mRNA in the Arc appeared to overlap with the known distribution of leptin receptor mRNA, we tested the hypothesis that GALP expression is regulated by leptin. Using in situ hybridization, we compared the number of GALP mRNA-containing cells among groups of rats that were fed ad lib or fasted for 48 h and treated with either leptin or vehicle. Fasting reduced the number of identifiable cells containing GALP mRNA in the Arc, whereas the treatment of fasted animals with leptin produced a 4-fold increase in the number of cells expressing GALP message. The presence of GALP mRNA in the hypothalamus and pituitary and its regulation by leptin suggests that GALP may have important neuroendocrine functions, including the physiological regulation of feeding, metabolism, and reproduction.


Micron ◽  
2003 ◽  
Vol 34 (8) ◽  
pp. 415-422 ◽  
Author(s):  
Tiziana Casoli ◽  
Giuseppina Di Stefano ◽  
Patrizia Fattoretti ◽  
Moreno Solazzi ◽  
Alessia Delfino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document