messenger rnas
Recently Published Documents


TOTAL DOCUMENTS

1522
(FIVE YEARS 394)

H-INDEX

103
(FIVE YEARS 15)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Griffin M. Schroeder ◽  
Chapin E. Cavender ◽  
Maya E. Blau ◽  
Jermaine L. Jenkins ◽  
David H. Mathews ◽  
...  

AbstractRiboswitches are structured non-coding RNAs often located upstream of essential genes in bacterial messenger RNAs. Such RNAs regulate expression of downstream genes by recognizing a specific cellular effector. Although nearly 50 riboswitch classes are known, only a handful recognize multiple effectors. Here, we report the 2.60-Å resolution co-crystal structure of a class I type I preQ1-sensing riboswitch that reveals two effectors stacked atop one another in a single binding pocket. These effectors bind with positive cooperativity in vitro and both molecules are necessary for gene regulation in bacterial cells. Stacked effector recognition appears to be a hallmark of the largest subgroup of preQ1 riboswitches, including those from pathogens such as Neisseria gonorrhoeae. We postulate that binding to stacked effectors arose in the RNA World to closely position two substrates for RNA-mediated catalysis. These findings expand known effector recognition capabilities of riboswitches and have implications for antimicrobial development.


2022 ◽  
Vol 65 (1) ◽  
Author(s):  
Minsu Park ◽  
Tae Young Um ◽  
Geupil Jang ◽  
Yang Do Choi ◽  
Chanseok Shin

AbstractRNA interference (RNAi) is an RNA-dependent gene silencing process that is regulated by the interaction between the RNA-induced silencing complex (RISC) and double-stranded RNA (dsRNA). Exogenous dsRNAs are imported directly into the cytoplasm, where they are cleaved by Dicer into short dsRNA fragments of 20–25 base pairs. These short dsRNA fragments, called small interfering RNAs (siRNAs) have sequence-specific interaction with target genes. The guide strand, onto which siRNAs are incorporated in the RISC interacts with the target mRNA sequence, thereby inducing cleavage and degradation of target messenger RNAs (mRNAs) by ribonucleases. Recent studies have shown that plant dsRNA treatments can induce RNAi. However, the dsRNA application methods and delivery systems involved have not been well examined. In this study, dsRNA was introduced to Arabidopsis thaliana by two methods: dipping and spray. We synthesized two dsRNAs designed to target mRNAs encoding enhanced green fluorescent protein (EGFP). After applying dsRNAs that target EGFP, we found an obvious reduction in GFP expression. This was determined using fluorescence microscopy and quantitative reverse transcription PCR to assess the mRNA levels of the auxin-sensitive reporter DR5-EGFP Arabidopsis thaliana. Our data revealed that applying target gene-specific exogenous dsRNAs can induce suppression of target genes of interest whether the dipping or spray method is used. This study therefore provides a foundation for understanding how to apply and deliver dsRNAs in plants.


2022 ◽  
Vol 14 ◽  
Author(s):  
Lanxiang Liu ◽  
Haiyang Wang ◽  
Xueyi Chen ◽  
Yangdong Zhang ◽  
Wenxia Li ◽  
...  

Major depressive disorder is caused by gene–environment interactions and the gut microbiota plays a pivotal role in the development of depression. However, the underlying mechanisms remain elusive. Herein, the differentially expressed hippocampal long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and microRNAs (miRNAs) between mice inoculated with gut microbiota from major depressive disorder patients or healthy controls were detected, to identify the effects of gut microbiota-dysbiosis on gene regulation patterns at the transcriptome level, and in further to explore the microbial-regulated pathological mechanisms of depression. As a result, 200 mRNAs, 358 lncRNAs, and 4 miRNAs were differentially expressed between the two groups. Functional analysis of these differential mRNAs indicated dysregulated inflammatory response to be the primary pathological change. Intersecting these differential mRNAs with targets of differentially expressed miRNAs identified 47 intersected mRNAs, which were mainly related to neurodevelopment. Additionally, a microbial-regulated lncRNA–miRNA–mRNA network based on RNA–RNA interactions was constructed. Subsequently, according to the competitive endogenous RNAs (ceRNA) hypothesis and the biological functions of these intersected genes, two neurodevelopmental ceRNA sub-networks implicating in depression were identified, one including two lncRNAs (4930417H01Rik and AI480526), one miRNA (mmu-miR-883b-3p) and two mRNAs (Adcy1 and Nr4a2), and the other including six lncRNAs (5930412G12Rik, 6430628N08Rik, A530013C23Rik, A930007I19Rik, Gm15489, and Gm16251), one miRNA (mmu-miR-377-3p) and three mRNAs (Six4, Stx16, and Ube3a), and these molecules could be recognized as potential genetic and epigenetic biomarkers in microbial-associated depression. This study provides new understanding of the pathogenesis of depression induced by gut microbiota-dysbiosis and may act as a theoretical basis for the development of gut microbiota-based antidepressants.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Sha-Sha Wang ◽  
Chun-Xue Zhou ◽  
Hany M. Elsheikha ◽  
Jun-Jun He ◽  
Feng-Cai Zou ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are important regulators of various biological and pathological processes, in particular the inflammatory response by modulating the transcriptional control of inflammatory genes. However, the role of lncRNAs in regulating the immune and inflammatory responses during infection with the protozoan parasite Toxoplasma gondii remains largely unknown. Methods We performed a longitudinal RNA sequencing analysis of human foreskin fibroblast (HFF) cells infected by T. gondii to identify differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs), and dysregulated pathways over the course of T. gondii lytic cycle. The transcriptome data were validated by qRT-PCR. Results RNA sequencing revealed significant transcriptional changes in the infected HFFs. A total of 697, 1234, 1499, 873, 1466, 561, 676 and 716 differentially expressed lncRNAs (DElncRNAs), and 636, 1266, 1843, 2303, 3022, 1757, 3088 and 2531 differentially expressed mRNAs (DEmRNAs) were identified at 1.5, 3, 6, 9, 12, 24, 36 and 48 h post-infection, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DElncRNAs and DEmRNAs revealed that T. gondii infection altered the expression of genes involved in the regulation of host immune response (e.g., cytokine–cytokine receptor interaction), receptor signaling (e.g., NOD-like receptor signaling pathway), disease (e.g., Alzheimer's disease), and metabolism (e.g., fatty acid degradation). Conclusions These results provide novel information for further research on the role of lncRNAs in immune regulation of T. gondii infection. Graphical Abstract


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 103
Author(s):  
Xiushan Mao ◽  
Nan Hou ◽  
Zhenzhong Liu ◽  
Jieqiang He

Drought stress is a significant environmental factor limiting crop growth worldwide. Malus prunifolia is an important apple species endemic to China and is used for apple cultivars and rootstocks with great drought tolerance. N6-methyladenosine (m6A) is a common epigenetic modification on messenger RNAs (mRNAs) in eukaryotes which is critical for various biological processes. However, there are no reports on m6A methylation in apple response to drought stress. Here, we assessed the m6A landscape of M. prunifolia seedlings in response to drought and analyzed the association between m6A modification and transcript expression. In total, we found 19,783 and 19,609 significant m6A peaks in the control and drought treatment groups, respectively, and discovered a UGUAH (H: A/U/C) motif. In M. prunifolia, under both control and drought conditions, peaks were highly enriched in the 3′ untranslated region (UTR) and coding sequence (CDS). Among 4204 significant differential m6A peaks in drought-treated M. prunifolia compared to control-treated M. prunifolia, 4158 genes with m6A modification were identified. Interestingly, a large number of hypermethylated peaks (4069) were stimulated by drought treatment compared to hypomethylation. Among the hypermethylated peak-related genes, 972 and 1238 differentially expressed genes (DEGs) were up- and down-regulated in response to drought, respectively. Gene ontology (GO) analyses of differential m6A-modified genes revealed that GO slims related to RNA processing, epigenetic regulation, and stress tolerance were significantly enriched. The m6A modification landscape depicted in this study sheds light on the epigenetic regulation of M. prunifolia in response to drought stress and indicates new directions for the breeding of drought-tolerant apple trees.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 78
Author(s):  
Hidetomo Yokoo ◽  
Makoto Oba ◽  
Satoshi Uchida

Messenger RNAs (mRNAs) were previously shown to have great potential for preventive vaccination against infectious diseases and therapeutic applications in the treatment of cancers and genetic diseases. Delivery systems for mRNAs, including lipid- and polymer-based carriers, are being developed for improving mRNA bioavailability. Among these systems, cell-penetrating peptides (CPPs) of 4–40 amino acids have emerged as powerful tools for mRNA delivery, which were originally developed to deliver membrane-impermeable drugs, peptides, proteins, and nucleic acids to cells and tissues. Various functionalities can be integrated into CPPs by tuning the composition and sequence of natural and non-natural amino acids for mRNA delivery. With the employment of CPPs, improved endosomal escape efficiencies, selective targeting of dendritic cells (DCs), modulation of endosomal pathways for efficient antigen presentation by DCs, and effective mRNA delivery to the lungs by dry powder inhalation have been reported; additionally, they have been found to prolong protein expression by intracellular stabilization of mRNA. This review highlights the distinctive features of CPP-based mRNA delivery systems.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dan Hao ◽  
Xiao Wang ◽  
Yu Yang ◽  
Bo Thomsen ◽  
Lars-Erik Holm ◽  
...  

Resveratrol (RSV) has been confirmed to benefit human health. Resveratrol supplemented in the feeds of animals improved pork, chicken, and duck meat qualities. In this study, we identified differentially expressed (DE) messenger RNAs (mRNAs) (n = 3,856) and microRNAs (miRNAs) (n = 93) for the weighted gene co-expression network analysis (WGCNA) to investigate the co-expressed DE mRNAs and DE miRNAs in the primary bovine myoblasts after RSV treatment. The mRNA results indicated that RSV treatments had high correlations with turquoise module (0.91, P-value = 0.01) and blue module (0.93, P-value < 0.01), while only the turquoise module (0.96, P-value < 0.01) was highly correlated with the treatment status using miRNA data. After biological enrichment analysis, the 2,579 DE genes in the turquoise module were significantly enriched in the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The top two GO terms were actin filament-based process (GO:0030029) and actin cytoskeleton organization (GO:0030036). The top two KEGG pathways were regulation of actin cytoskeleton (bta04810) and tight junction (bta04530). Then, we constructed the DE mRNA co-expression and DE miRNA co-expression networks in the turquoise module and the mRNA–miRNA targeting networks based on their co-expressions in the key module. In summary, the RSV-induced miRNAs participated in the co-expression networks that could affect mRNA expressions to regulate the primary myoblast differentiation. Our study provided a better understanding of the roles of RSV in inducing miRNA and of the characteristics of DE miRNAs in the key co-expressed module in regulation of mRNAs and revealed new candidate regulatory miRNAs and genes for the beef quality traits.


2021 ◽  
Vol 8 ◽  
Author(s):  
Penglu Wei ◽  
Dehuai Long ◽  
Yupei Tan ◽  
Wenlong Xing ◽  
Xiang Li ◽  
...  

Aim: To explore the diverse target distribution and variable mechanisms of different fangjis prescriptions when treating arrhythmias based on the systems pharmacology.Methods: The active ingredients and their corresponding targets were acquired from the three fangjis [Zhigancao Tang (ZT), Guizhigancao Longgumuli Tang (GLT), and Huanglian E'jiao Tang (HET)] and the arrhythmia-related genes were identified based on comprehensive database screening. Networks were constructed between the fangjis and arrhythmia and used to define arrhythmia modules. Common and differential gene targets were identified within the arrhythmia network modules and the cover rate (CR) matrix was applied to compare the contributions of the fangjis to the network and modules. Comparative pharmacogenetics analyses were then conducted to define the arrhythmia-related signaling pathways regulated by the fangjis prescriptions. Finally, the divergence and convergence points of the arrhythmia pathways were deciphered based on databases and the published literature.Results: A total of 187, 105, and 68 active ingredients and 1,139, 1,195, and 811 corresponding gene targets of the three fangjis were obtained and 102 arrhythmia-related genes were acquired. An arrhythmia network was constructed and subdivided into 4 modules. For the target distribution analysis, 65.4% of genes were regulated by the three fangjis within the arrhythmia network. ZT and GLT were more similar to each other, mainly regulated by module two, whereas HET was divided among all the modules. From the perspective of signal transduction, calcium-related pathways [calcium, cyclic guanosine 3′,5′-monophosphate (cGMP)-PKG, and cyclic adenosine 3′,5′-monophosphate (cAMP)] and endocrine system-related pathways (oxytocin signaling pathway and renin secretion pathways) were associated with all the three fangjis prescriptions. Nevertheless, heterogeneity existed between the biological processes and pathway distribution among the three prescriptions. GLT and HET were particularly inclined toward the conditions involving abnormal hormone secretion, whereas ZT tended toward renin-angiotensin-aldosterone system (RAAS) disorders. However, calcium signaling-related pathways prominently feature in the pharmacological activities of the decoctions. Experimental validation indicated that ZT, GLT, and HET significantly shortened the duration of ventricular arrhythmia (VA) and downregulated the expression of CALM2 and interleukin-6 (IL-6) messenger RNAs (mRNAs); GLT and HET downregulated the expression of CALM1 and NOS3 mRNAs; HET downregulated the expression of CRP mRNA.Conclusion: Comparing the various distributions of the three fangjis, pathways provide evidence with respect to precise applications toward individualized arrhythmia treatments.


Sign in / Sign up

Export Citation Format

Share Document