Optimal frame aggregation level for IEEE 802.11 PCF protocol

Author(s):  
Woo-Yong Choi
2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Muhammad Adnan ◽  
Eun-Chan Park

This paper aims to improve energy efficiency of IEEE 802.11 wireless local area networks (WLANs) by effectively dealing with idle listening (IL), which is required for channel sensing and is unavoidable in a contention-based channel access mechanism. Firstly, we show that IL is a dominant source of energy drain in WLANs and it cannot be effectively alleviated by the power saving mechanism proposed in the IEEE 802.11 standard. To solve this problem, we propose an energy-efficient mechanism that combines three schemes in a systematic way: downclocking, frame aggregation, and contention window adjustment. The downclocking scheme lets a station remain in a semisleep state when overhearing frames destined to neighbor stations, whereby the station consumes the minimal energy without impairing channel access capability. As well as decreasing the channel access overhead, the frame aggregation scheme prolongs the period of semisleep time. Moreover, by controlling the size of contention window based on the number of stations, the proposed mechanism decreases unnecessary IL time due to collision and retransmission. By deriving an analysis model and performing extensive simulations, we confirm that the proposed mechanism significantly improves the energy efficiency and throughput, by up to 2.8 and 1.8 times, respectively, compared to the conventional power saving mechanisms.


Author(s):  
Yunhai Guo ◽  
Zhengxiang Li ◽  
Rui Lv ◽  
Zhanxin Yang

The Linear Wireless Ad-Hoc Network (Linear WANET), as a branch of the Ad-Hoc network, refers to a self-organizing multi-hop wireless network in which nodes are arranged linearly. Frame aggregation and RTS/CTS schemes are introduced in IEEE 802.11 aims to improve network transmission performance. However, the traditional mechanisms may not have good adaptability in linear multi-hop networks. Thus, we defined a Linear WANET simulation model based on the IEEE 802.11 protocol. We established this model on the NS-3 network simulator to perform A-MSDU, A-MPDU, and two-level frame aggregation simulation and analyzed the aggregation performance under different channel environments. Meanwhile, the RTS/CTS and TXOP mechanisms were also simulated in this paper. We analyzed the performance of each mechanism in a Linear WANET under saturated and unsaturated environments. We found that in a Linear WANET, the A-MSDU mechanism can improve system performance to a limited extent, but at the same time, it will increase the packet loss rate and delay. Although the A-MPDU mechanism can reduce the retransmission overhead, the higher A-MPDU Limit cannot further improve the throughput of the Linear WANET. Meanwhile, in the case of single A-MPDU aggregation, there has a lowest data delivery interval that the Linear WANET system can withstand. Besides, we also found that the native TXOP mechanism cannot effectively improve the system efficiency of Linear WANET. And the RTS/CTS mechanism can improve the performance of Linear WANETs, especially in a saturated throughput environment.


Sign in / Sign up

Export Citation Format

Share Document