Efficient continuation Newton-like method for solving systems of non-linear equations

2006 ◽  
Vol 174 (2) ◽  
pp. 846-853 ◽  
Author(s):  
Jisheng Kou ◽  
Yitian Li ◽  
Xiuhua Wang
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Guillaume Bossard ◽  
Axel Kleinschmidt ◽  
Ergin Sezgin

Abstract We construct a pseudo-Lagrangian that is invariant under rigid E11 and transforms as a density under E11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E11-representation together with the E11 coset fields. We show that, in combination with gauge-invariant and E11-invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E10 sigma model.


Author(s):  
Vesa Mustonen

SynopsisThe existence of a variational solution is shown for the strongly non-linear elliptic boundary value problem in unbounded domains. The proof is a generalisation to Orlicz-Sobolev space setting of the idea introduced in [15] for the equations involving polynomial non-linearities only.


Author(s):  
N. Parhi

AbstractIn this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical linear differential equations of third order. Some of these results have been extended to non-linear equations.


Sign in / Sign up

Export Citation Format

Share Document