New complexiton solutions of the nonlinear evolution equations using a generalized rational expansion method with symbolic computation

2007 ◽  
Vol 190 (1) ◽  
pp. 974-986 ◽  
Author(s):  
Lina Song ◽  
Hongqing Zhang
2004 ◽  
Vol 59 (9) ◽  
pp. 529-536 ◽  
Author(s):  
Yong Chen ◽  
Qi Wang ◽  
Biao Lic

A new Jacobi elliptic function rational expansion method is presented by means of a new general ansatz and is very powerful, with aid of symbolic computation, to uniformly construct more new exact doubly-periodic solutions in terms of rational form Jacobi elliptic function of nonlinear evolution equations (NLEEs). We choose a (2+1)-dimensional dispersive long wave equation to illustrate the method. As a result, we obtain the solutions found by most existing Jacobi elliptic function expansion methods and find other new and more general solutions at the same time. When the modulus of the Jacobi elliptic functions m→1 or 0, the corresponding solitary wave solutions and trigonometric function (singly periodic) solutions are also found.


Author(s):  
Asif Yokus ◽  
Hülya Durur ◽  
Hijaz Ahmad

In this paper, the (1/G')-expansion method is used to solve the coupled Boiti-Leon-Pempinelli (CBLP) system. The proposed method was used to construct hyperbolic type solutions of the nonlinear evolution equations. To asses the applicability and effectiveness of this method, some nonlinear evolution equations have been investigated in this study. It is shown that with the help of symbolic computation, the (1/G')-expansion method provides a powerful and straightforward mathematical tool for solving nonlinear partial differential equations.


2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.


2014 ◽  
Vol 1 (2) ◽  
pp. 140038 ◽  
Author(s):  
Md. Shafiqul Islam ◽  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
Antonio Mastroberardino

The purpose of this article is to present an analytical method, namely the improved F -expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-Mei Zhao

A generalized(G′/G)-expansion method is proposed to seek the exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the Zakharov equations. As a result, some new Jacobi elliptic function solutions of the Zakharov equations are obtained. This method can also be applied to other nonlinear evolution equations in mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document