Multiple (G′/G)-expansion method and its applications to nonlinear evolution equations in mathematical physics

Pramana ◽  
2012 ◽  
Vol 78 (3) ◽  
pp. 375-388 ◽  
Author(s):  
Junchao Chen ◽  
Biao Li
2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-Mei Zhao

A generalized(G′/G)-expansion method is proposed to seek the exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the Zakharov equations. As a result, some new Jacobi elliptic function solutions of the Zakharov equations are obtained. This method can also be applied to other nonlinear evolution equations in mathematical physics.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tarikul Islam ◽  
Armina Akter

PurposeFractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to their importance in the nature of real world. In this article, the autors suggest a productive technique, called the rational fractional (DξαG/G)-expansion method, to unravel the nonlinear space-time fractional potential Kadomtsev–Petviashvili (PKP) equation, the nonlinear space-time fractional Sharma–Tasso–Olver (STO) equation and the nonlinear space-time fractional Kolmogorov–Petrovskii–Piskunov (KPP) equation. A fractional complex transformation technique is used to convert the considered equations into the fractional order ordinary differential equation. Then the method is employed to make available their solutions. The constructed solutions in terms of trigonometric function, hyperbolic function and rational function are claimed to be fresh and further general in closed form. These solutions might play important roles to depict the complex physical phenomena arise in physics, mathematical physics and engineering.Design/methodology/approachThe rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is of the form U(ξ)=∑i=0nai(DξαG/G)i/∑i=0nbi(DξαG/G)i.FindingsAchieved fresh and further abundant closed form traveling wave solutions to analyze the inner mechanisms of complex phenomenon in nature world which will bear a significant role in the of research and will be recorded in the literature.Originality/valueThe rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is newly established and productive.


2019 ◽  
Vol 4 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Haci Mehmet Baskonus ◽  
Hasan Bulut ◽  
Tukur Abdulkadir Sulaiman

AbstractIn this paper, a powerful sine-Gordon expansion method (SGEM) with aid of a computational program is used in constructing a new hyperbolic function solutions to one of the popular nonlinear evolution equations that arises in the field of mathematical physics, namely; longren-wave equation. We also give the 3D and 2D graphics of all the obtained solutions which are explaining new properties of model considered in this paper. Finally, we submit a comprehensive conclusion at the end of this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Yang ◽  
Jian-ming Qi ◽  
Xue-hua Tang ◽  
Yong-yi Gu

We used the complex method and the exp(-ϕ(z))-expansion method to find exact solutions of the (2+1)-dimensional mKdV equation. Through the maple software, we acquire some exact solutions. We have faith in that this method exhibited in this paper can be used to solve some nonlinear evolution equations in mathematical physics. Finally, we show some simulated pictures plotted by the maple software to illustrate our results.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
E. M. E. Zayed ◽  
M. A. M. Abdelaziz

We apply the two-variable (, )-expansion method to construct new exact traveling wave solutions with parameters of the nonlinear ()-dimensional KdV-mKdV equation. This method can be thought of as the generalization of the well-known ()-expansion method given recently by M. Wang et al. When the parameters are replaced by special values, the well-known solitary wave solutions of this equation are rediscovered from the traveling waves. It is shown that the proposed method provides a more general powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.


2015 ◽  
Vol 7 (3) ◽  
pp. 1-10 ◽  
Author(s):  
M. N. Alam ◽  
M. G. Hafez ◽  
M. A. Akbar ◽  
H. -O. -Roshid

The exp(?(?))-expansion method is applied to find exact traveling wave solutions to the (2+1)-dimensional Boussinesq equation which is an important equation in mathematical physics. The traveling wave solutions are expressed in terms of the exponential functions, the hyperbolic functions, the trigonometric functions and the rational functions. The procedure is simple, direct and constructive without the help of a computer algebra system. The applied method will be used in further works to establish more new solutions for other kinds of nonlinear evolution equations arising in mathematical physics and engineering.


Sign in / Sign up

Export Citation Format

Share Document