Accelerated iterative methods for finding solutions of a system of nonlinear equations

2007 ◽  
Vol 190 (2) ◽  
pp. 1815-1823 ◽  
Author(s):  
Miquel Grau-Sánchez ◽  
Josep M. Peris ◽  
José M. Gutiérrez
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mudassir Shams ◽  
Naila Rafiq ◽  
Nasreen Kausar ◽  
Praveen Agarwal ◽  
Choonkil Park ◽  
...  

AbstractIn this article, we construct a family of iterative methods for finding a single root of nonlinear equation and then generalize this family of iterative methods for determining all roots of nonlinear equations simultaneously. Further we extend this family of root estimating methods for solving a system of nonlinear equations. Convergence analysis shows that the order of convergence is 3 in case of the single root finding method as well as for the system of nonlinear equations and is 5 for simultaneous determination of all distinct and multiple roots of a nonlinear equation. The computational cost, basin of attraction, efficiency, log of residual and numerical test examples show that the newly constructed methods are more efficient as compared to the existing methods in literature.


Author(s):  
M.Q. Khirallah ◽  
M.A. Hafiz

In this paper, we suggest and study Simpson's formula, and Newton's two, three and four Cosed formulas iterative methods for solving the system of nonlinear equations by using Predictor-Corrector of Newton method. We present four new algorithms for solving the system of nonlinear equations (SNLE). We prove that these new algorithms have convergence. Several numerical examples are given to illustrate the efficiency and performance of the new iterative methods. These new algorithms may be viewed as an extensions and generalizations of the existing methods for solving the system of nonlinear equations.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5976
Author(s):  
Kalyanasundaram Madhu ◽  
Arul Elango ◽  
René Jr Landry ◽  
Mo’tassem Al-arydah

A two-step fifth and a multi-step 5+3r order iterative method are derived, r≥1 for finding the solution of system of nonlinear equations. The new two-step fifth order method requires two functions, two first order derivatives, and the multi-step methods needs a additional function per step. The performance of this method has been tested with finding solutions to several test problems then applied to solving pseudorange nonlinear equations on Global Navigation Satellite Signal (GNSS). To solve the problem, at least four satellite’s measurements are needed to locate the user position and receiver time offset. In this work, a number of satellites from 4 to 8 are considered such that the number of equations is more than the number of unknown variables to calculate the user position. Moreover, the Geometrical Dilution of Precision (GDOP) values are computed based on the satellite selection algorithm (fuzzy logic method) which could be able to bring the best suitable combination of satellites. We have restricted the number of satellites to 4 to 6 for solving the pseudorange equations to get better GDOP value even after increasing the number of satellites beyond six also yields a 0.4075 GDOP value. Actually, the conventional methods utilized in the position calculation module of the GNSS receiver typically converge with six iterations for finding the user position whereas the proposed method takes only three iterations which really decreases the computation time which provide quicker position calculation. A practical study was done to evaluate the computation efficiency index (CE) and efficiency index (IE) of the new model. From the simulation outcomes, it has been noted that the new method is more efficient and converges 33% faster than the conventional iterative methods with good accuracy of 92%.


2017 ◽  
Vol 95 (5) ◽  
pp. 881-897 ◽  
Author(s):  
Salima Kouser ◽  
Shafiq Ur Rehman ◽  
Fayyaz Ahmad ◽  
Stefano Serra-Capizzano ◽  
Malik Zaka Ullah ◽  
...  

2019 ◽  
Vol 10 (4) ◽  
pp. 877-886 ◽  
Author(s):  
Chhavi Mangla ◽  
Musheer Ahmad ◽  
Moin Uddin

Sign in / Sign up

Export Citation Format

Share Document