scholarly journals The iterative methods with higher order convergence for solving a system of nonlinear equations

2017 ◽  
Vol 10 (07) ◽  
pp. 3834-3842
Author(s):  
Zhongyuan Chen ◽  
Xiaofang Qiu ◽  
Songbin Lin ◽  
Baoguo Chen
2013 ◽  
Vol 22 (2) ◽  
pp. 127-134
Author(s):  
GHEORGHE ARDELEAN ◽  
◽  
LASZLO BALOG ◽  

In [YoonMe Ham et al., Some higher-order modifications of Newton’s method for solving nonlinear equations, J. Comput. Appl. Math., 222 (2008) 477–486], some higher-order modifications of Newton’s method for solving nonlinear equations are presented. In [Liang Fang et al., Some modifications of Newton’s method with higher-order convergence for solving nonlinear equations, J. Comput. Appl. Math., 228 (2009) 296–303], the authors point out some flaws in the results of YoonMe Ham et al. and present some modified variants of the method. In this paper we point out that the paper of Liang Fang et al. itself contains some flaw results and we correct them by using symbolic computation in Mathematica. Moreover, we show that the main result in Theorem 3 of Liang Fang et al. is wrong. The order of convergence of the method is’nt 3m+2, but is 2m+4. We give the general expression of convergence error too.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


Sign in / Sign up

Export Citation Format

Share Document