Matlab implementation of a moving grid method based on the equidistribution principle

2009 ◽  
Vol 215 (5) ◽  
pp. 1821-1829 ◽  
Author(s):  
P. Saucez ◽  
L. Some ◽  
A. Vande Wouwer
1998 ◽  
Vol 53 (19) ◽  
pp. 3393-3411 ◽  
Author(s):  
Jörg Frauhammer ◽  
Harald Klein ◽  
Gerhart Eigenberger ◽  
Ulrich Nowak

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Mehdi Razzaghi

Purpose This study aims to present a moving grid method based on the manipulation of connections. Design/methodology/approach In this study, the grid’s connections were manipulated to simulate a released store’s displacement. The selected model in this research is the EGLIN test case. In the introduced method, connections are modified in specific nodes of the grid. Governing flow equations were solved with the finite volume method. The major characteristic of this technique is using the averaging method for calculating the flux of cells. Findings This method maintains the grid’s quality even in large displacements of the released store. The three-dimensional simulation was carried out in transonic and supersonic regimes. Comparison of the results with experimental data were highly satisfactory. Research limitations/implications Using this moving grid method is recommended for simulating other models. Practical implications Prediction of store trajectory released from air vehicles is one of the most critical issues under study especially in the design of new stores. Originality/value The most prominent advantage of this method is maintaining the grid quality simultaneous with large displacements of the released store.


1993 ◽  
Vol 115 (4) ◽  
pp. 597-601 ◽  
Author(s):  
Ning Ren ◽  
Si C. Lee

A new method for simulating dry contacts of three-dimensional rough surfaces has been developed. The present work is based upon Moving Grid Method (MGM) which greatly reduces the required computer memory size. One of the major difficulties in simulating contact problems is the huge requirement in computer Random Access Memory (RAM). The total number of nodes (N) to represent a typical three dimensional roughness topography can easily be in the order of tens of thousands. To store the corresponding deformation matrix based on conventional matrix method requires memory size in the order of N2. The computational time necessary to construct such a matrix is also proportional to N2. Thus a reasonable solution for the three dimensional contact problem can be difficult to obtain. In Moving Grid Method, the required storage space for the deformation matrix is reduced to the order of N. The computing time to construct the matrix is also proportional to N. The contact simulation solutions which include the asperity pressure distributions and the corresponding deformed surface profiles were calculated. The digitized surface profiles were used in the simulations. The 3-D results were compared with an existing 2-D model and the comparison showed excellent agreement.


2010 ◽  
Author(s):  
Shuli Sun ◽  
Bin Chen ◽  
Jianfei Liu ◽  
Mingwu Yuan ◽  
Jane W. Z. Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document