equidistribution principle
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2017 ◽  
Vol 6 (3) ◽  
Author(s):  
D. Shakti ◽  
J. Mohapatra

AbstractA nonlinear singularly perturbed boundary value problem depending on a parameter is considered. First, we solve the problem using the backward Euler finite difference scheme on an adaptive grid. The adaptive grid is a special nonuniform mesh generated through equidistribution principle by a positive monitor function depending on the solution. The behavior of the solution, the stability and the error estimates are discussed. Then, the Richardson extrapolation technique is applied to improve the accuracy of the computed solution associated to the backward Euler scheme. The proofs of the uniform convergence for the backward Euler scheme and the Richardson extrapolation are carried out. Numerical experiments validate the theoretical estimates and indicates that the estimates are sharp.


2013 ◽  
Vol 5 (04) ◽  
pp. 407-422 ◽  
Author(s):  
Matthew A. Beauregard ◽  
Qin Sheng

AbstractFinite difference computations that involve spatial adaptation commonly employ an equidistribution principle. In these cases, a new mesh is constructed such that a given monitor function is equidistributed in some sense. Typical choices of the monitor function involve the solution or one of its many derivatives. This straightforward concept has proven to be extremely effective and practical. However, selections of core monitoring functions are often challenging and crucial to the computational success. This paper concerns six different designs of the monitoring function that targets a highly nonlinear partial differential equation that exhibits both quenching-type and degeneracy singularities. While the first four monitoring strategies are within the so-calledprimitiveregime, the rest belong to a later category of themodifiedtype, which requires the priori knowledge of certain important quenching solution characteristics. Simulated examples are given to illustrate our study and conclusions.


Sign in / Sign up

Export Citation Format

Share Document