scholarly journals Uniqueness of Iterative Positive Solution to Nonlinear Fractional Differential Equations with Negatively Perturbed Term

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jingjing Tan ◽  
Meixia Li ◽  
Aixia Pan

We prove that there are unique positive solutions for a new kind of fractional differential equation with a negatively perturbed term boundary value problem. Our methods rely on an iterative algorithm which requires constructing an iterative scheme to approximate the solution. This allows us to calculate the estimation of the convergence rate and the approximation error.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jingjing Tan ◽  
Xinguang Zhang ◽  
Lishan Liu ◽  
Yonghong Wu

In this paper, we consider the iterative algorithm for a boundary value problem of n -order fractional differential equation with mixed integral and multipoint boundary conditions. Using an iterative technique, we derive an existence result of the uniqueness of the positive solution, then construct the iterative scheme to approximate the positive solution of the equation, and further establish some numerical results on the estimation of the convergence rate and the approximation error.


2011 ◽  
Vol 403-408 ◽  
pp. 432-436
Author(s):  
Shou Fu Ma ◽  
Zhen Fang Wei

In recent years, the study on nonlinear fractional differential equation has been more concerned as it is widely used in physics, mechanics, geology, automation and many other disciplines and fields. This paper focuses on the sub-linear fractional differential equations, whose nonlinear is constrained by the power function. While in this case, it is possible to have positive solution by using the cone compression fixed point theorem. This study represents analysis on problems related to the fractional differential equations from the above aspects. With further development of this field in theoretical research and application, more explorations are waiting for us to do to lay a good theoretical foundation for its future development, and build up a broader prospect.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Rabha W. Ibrahim

We prove the Ulam-Hyers stability of Cauchy fractional differential equations in the unit disk for the linear and non-linear cases. The fractional operators are taken in sense of Srivastava-Owa operators.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


Fractals ◽  
2016 ◽  
Vol 24 (02) ◽  
pp. 1650021 ◽  
Author(s):  
KIRAN M. KOLWANKAR

The concept of local fractional derivative was introduced in order to be able to study the local scaling behavior of functions. However it has turned out to be much more useful. It was found that simple equations involving these operators naturally incorporate the fractal sets into the equations. Here, the scope of these equations has been extended further by considering different possibilities for the known function. We have also studied a separable local fractional differential equation along with its method of solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Rabha W. Ibrahim

We provide a complex transform that maps the complex fractional differential equation into a system of fractional differential equations. The homogeneous and nonhomogeneous cases for equivalence equations are discussed and also nonequivalence equations are studied. Moreover, the existence and uniqueness of solutions are established and applications are illustrated.


Author(s):  
Nguyen Cong ◽  
Doan Son ◽  
Hoang Tuan

AbstractOur aim in this paper is to investigate the asymptotic behavior of solutions of linear fractional differential equations. First, we show that the classical Lyapunov exponent of an arbitrary nontrivial solution of a bounded linear fractional differential equation is always nonnegative. Next, using the Mittag-Leffler function, we introduce an adequate notion of fractional Lyapunov exponent for an arbitrary function. We show that for a linear fractional differential equation, the fractional Lyapunov spectrum which consists of all possible fractional Lyapunov exponents of its solutions provides a good description of asymptotic behavior of this equation. Consequently, the stability of a linear fractional differential equation can be characterized by its fractional Lyapunov spectrum. Finally, to illustrate the theoretical results we compute explicitly the fractional Lyapunov exponent of an arbitrary solution of a planar time-invariant linear fractional differential equation.


2020 ◽  
Vol 24 (4) ◽  
pp. 2535-2542
Author(s):  
Yong-Ju Yang

This paper proposes a new method to solve local fractional differential equation. The method divides the studied equation into a system, where the initial solution is obtained from a residual equation. The new method is therefore named as the fractional residual method. Examples are given to elucidate its efficiency and reliability.


2020 ◽  
Vol 40 (2) ◽  
pp. 227-239
Author(s):  
John R. Graef ◽  
Said R. Grace ◽  
Ercan Tunç

This paper is concerned with the asymptotic behavior of the nonoscillatory solutions of the forced fractional differential equation with positive and negative terms of the form \[^{C}D_{c}^{\alpha}y(t)+f(t,x(t))=e(t)+k(t)x^{\eta}(t)+h(t,x(t)),\] where \(t\geq c \geq 1\), \(\alpha \in (0,1)\), \(\eta \geq 1\) is the ratio of positive odd integers, and \(^{C}D_{c}^{\alpha}y\) denotes the Caputo fractional derivative of \(y\) of order \(\alpha\). The cases \[y(t)=(a(t)(x^{\prime}(t))^{\eta})^{\prime} \quad \text{and} \quad y(t)=a(t)(x^{\prime}(t))^{\eta}\] are considered. The approach taken here can be applied to other related fractional differential equations. Examples are provided to illustrate the relevance of the results obtained.


Sign in / Sign up

Export Citation Format

Share Document