scholarly journals Existence of Positive Solution for BVP of Nonlinear Fractional Differential Equation

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-ling Li ◽  
Shi-you Lin

We study the following nonlinear fractional differential equation involving thep-Laplacian operatorDβφpDαut=ft,ut,1<t<e,u1=u′1=u′e=0,Dαu1=Dαue=0, where the continuous functionf:1,e×0,+∞→[0,+∞),2<α≤3,1<β≤2.Dαdenotes the standard Hadamard fractional derivative of the orderα, the constantp>1, and thep-Laplacian operatorφps=sp-2s. We show some results about the existence and the uniqueness of the positive solution by using fixed point theorems and the properties of Green's function and thep-Laplacian operator.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
S. Nageswara Rao ◽  
M. Zico Meetei

In this paper, we consider a four-point coupled boundary value problem for system of the nonlinear semipositone fractional differential equation D0+αu(t)+λf(t,u(t),v(t))=0,  0<t<1, D0+αv(t)+μg(t,u(t),v(t))=0,  0<t<1, u(0)=v(0)=0,  a1D0+βu(1)=b1D0+βv(ξ), a2D0+βv(1)=b2D0+βu(η),  η,ξ∈(0,1), where the coefficients ai,bi,i=1,2 are real positive constants, α∈(1,2],β∈(0,1],D0+α, D0+β are the standard Riemann-Liouville derivatives. Values of the parameters λ and μ are determined for which boundary value problem has positive solution by utilizing a fixed point theorem on cone.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chen Yang ◽  
Jieming Zhang

We are concerned with the existence and uniqueness of positive solutions for the following nonlinear perturbed fractional two-point boundary value problem:D0+αu(t)+f(t,u,u',…,u(n-2))+g(t)=0, 0<t<1, n-1<α≤n, n≥2,u(0)=u'(0)=⋯=u(n-2)(0)=u(n-2)(1)=0, whereD0+αis the standard Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem of generalized concave operators. An example is given to illustrate the main result.


2019 ◽  
Vol 13 (05) ◽  
pp. 2050089 ◽  
Author(s):  
S. Nageswara Rao ◽  
Meshari Alesemi

In this paper, we establish sufficient conditions for the existence of positive solutions for a system of nonlinear fractional [Formula: see text]-Laplacian boundary value problems under different combinations of superlinearity and sublinearity of the nonlinearities via the Guo–Krasnosel’skii fixed point theorem. Moreover, an example is given to illustrate our results.


2020 ◽  
Vol 23 (4) ◽  
pp. 1188-1207
Author(s):  
J. Vanterler da C. Sousa ◽  
Mouffak Benchohra ◽  
Gaston M. N’Guérékata

AbstractThis paper investigates the overall solution attractivity of the fractional differential equation involving the ψ-Hilfer fractional derivative and using the Krasnoselskii’s fixed point theorem. We highlight some particular cases of the results presented here, especially involving the Riemann-Liouville, thus illustrating the broad class of fractional derivatives to which these results can be applied.


Author(s):  
Jinhua Wang ◽  
Hongjun Xiang ◽  
ZhiGang Liu

We consider the existence and multiplicity of concave positive solutions for boundary value problem of nonlinear fractional differential equation withp-Laplacian operatorD0+γ(ϕp(D0+αu(t)))+f(t,u(t),D0+ρu(t))=0,0<t<1,u(0)=u′(1)=0,u′′(0)=0,D0+αu(t)|t=0=0, where0<γ<1,2<α<3,0<ρ⩽1,D0+αdenotes the Caputo derivative, andf:[0,1]×[0,+∞)×R→[0,+∞)is continuous function,ϕp(s)=|s|p-2s,p>1,  (ϕp)-1=ϕq,  1/p+1/q=1. By using fixed point theorem, the results for existence and multiplicity of concave positive solutions to the above boundary value problem are obtained. Finally, an example is given to show the effectiveness of our works.


Sign in / Sign up

Export Citation Format

Share Document