Near-field fluctuations and far-field noise of a three-element airfoil system by a discrete vortex method

2010 ◽  
Vol 216 (4) ◽  
pp. 1072-1086 ◽  
Author(s):  
Z.C. Zheng ◽  
B.K. Tan ◽  
Y. Xu
1989 ◽  
Vol 9 (34) ◽  
pp. 273-276
Author(s):  
Takeyoshi Kimura ◽  
Michihisa Tsutahara ◽  
Zhong-yi Wang ◽  
Hiroshi Ishii

AIAA Journal ◽  
2014 ◽  
Vol 52 (12) ◽  
pp. 2817-2828 ◽  
Author(s):  
Partha Mondal ◽  
N. Balakrishnan

2011 ◽  
Vol 19 (03) ◽  
pp. 291-316 ◽  
Author(s):  
ALI UZUN ◽  
M. YOUSUFF HUSSAINI

This paper demonstrates an application of computational aeroacoustics to the prediction of noise generated by a round nozzle jet flow. In this study, the nozzle internal flow and the free jet flow outside are computed simultaneously by a high-order accurate, multi-block, large-eddy simulation (LES) code with overset grid capability. To simulate the jet flow field and its radiated noise, we solve the governing equations on approximately 370 million grid points using high-fidelity numerical schemes developed for computational aeroacoustics. Projection of the near-field noise to the far-field is accomplished by coupling the LES data with the Ffowcs Williams–Hawkings method. The main emphasis of these simulations is to compute the jet flow in sufficient detail to accurately capture the physical processes that lead to noise generation. Two separate simulations are performed using turbulent and laminar inflow conditions at the jet nozzle inlet. Simulation results are compared with the corresponding experimental measurements. Results show that nozzle inflow conditions have an influence on the jet flow field and far-field noise.


Sign in / Sign up

Export Citation Format

Share Document