spectrum measurements
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 2021 (11) ◽  
pp. 031
Author(s):  
Florian Beutler ◽  
Patrick McDonald

Abstract We make use of recent developments in the analysis of galaxy redshift surveys to present an easy to use matrix-based analysis framework for the galaxy power spectrum multipoles, including wide-angle effects and the survey window function. We employ this framework to derive the deconvolved power spectrum multipoles of 6dFGS DR3, BOSS DR12 and the eBOSS DR16 quasar sample. As an alternative to the standard analysis, the deconvolved power spectrum multipoles can be used to perform a data analysis agnostic of survey specific aspects, like the window function. We show that in the case of the BOSS dataset, the Baryon Acoustic Oscillation (BAO) analysis using the deconvolved power spectra results in the same likelihood as the standard analysis. To facilitate the analysis based on both the convolved and deconvolved power spectrum measurements, we provide the window function matrices, wide-angle matrices, covariance matrices and the power spectrum multipole measurements for the datasets mentioned above. Together with this paper we publish a Python-based toolbox to calculate the different analysis components. The appendix contains a detailed user guide with examples for how a cosmological analysis of these datasets could be implemented. We hope that our work makes the analysis of galaxy survey datasets more accessible to the wider cosmology community.


2021 ◽  
Vol 11 (3) ◽  
pp. 960
Author(s):  
Quan Zhao ◽  
Ling Tong ◽  
Bo Gao

Based on chirp transform and pulse compression technology, chirp transform spectrometers (CTSs) can be used to perform high-resolution and real-time spectrum measurements. Nowadays, they are widely applied for weather and astronomical observations. The surface acoustic wave (SAW) filter is a key device for pulse compression. The system performance is significantly affected by the dispersion characteristics match and the large insertion loss of the SAW filters. In this paper, a linear phase sampling and accumulating (LPSA) algorithm was developed to replace the matched filter for fast pulse compression. By selecting and accumulating the sampling points satisfying a specific periodic phase distribution, the intermediate frequency (IF) chirp signal carrying the information of the input signal could be detected and compressed. Spectrum measurements across the entire operational bandwidth could be performed by shifting the fixed sampling points in the time domain. A two-stage frequency resolution subdivision method was also developed for the fast pulse compression of the sparse spectrum, which was shown to significantly improve the calculation speed. The simulation and experiment results demonstrate that the LPSA method can realize fast pulse compression with adequate high amplitude accuracy and frequency resolution. Compared to existing digital pulse compression technology, this method can significantly reduce the number of required calculations, especially for measurements of sparse signals.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hiroki Iwata ◽  
Kenta Umebayashi ◽  
Ahmed Al-Tahmeesschi ◽  
Janne Lehtomaki

Sign in / Sign up

Export Citation Format

Share Document