Exponential stability of a class of networked control systems with time delays and packet dropouts

2012 ◽  
Vol 218 (17) ◽  
pp. 8887-8894 ◽  
Author(s):  
Jufeng Wang ◽  
Huizhong Yang
Author(s):  
Chenyu Guo ◽  
Weidong Zhang

This paper is concerned with the problem of H∞ estimation for networked control systems. Time delays and packet dropouts are considered simultaneously. The occurrence probability of each time delay is considered. The packet dropouts have the Bernoulli distributions. The system is modeled as Markovian jump linear systems with partly unknown transition probability. State observer is designed to estimate the practical state with H∞ feature. The estimation problem is cast into a set of linear matrix inequalities. An example is provided to illustrate the effectiveness and applicability of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Jufeng Wang ◽  
Chunfeng Liu ◽  
Kai Li

This paper studies theH-infinity stochastic control problem for a class of networked control systems (NCSs) with time delays and packet dropouts. The state feedback closed-loop NCS is modeled as a Markovian jump linear system. Through using a Lyapunov function, a sufficient condition is obtained, under which the system is stochastically exponential stability with a desiredH-infinity disturbance attenuation level. The designedH-infinity controller is obtained by solving a set of linear matrix inequalities with some inversion constraints. An numerical example is presented to demonstrate the effectiveness of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Li Qiu ◽  
Qin Luo ◽  
Shanbin Li ◽  
Bugong Xu

This paper is concerned with the problem of modeling and output feedback controller design for a class of discrete-time networked control systems (NCSs) with time delays and packet dropouts. A Markovian jumping method is proposed to deal with random time delays and packet dropouts. Different from the previous studies on the issue, the characteristics of networked communication delays and packet dropouts can be truly reflected by the unified model; namely, both sensor-to-controller (S-C) and controller-to-actuator (C-A) time delays, and packet dropouts are modeled and their history behavior is described by multiple Markov chains. The resulting closed-loop system is described by a new Markovian jump linear system (MJLS) with Markov delays model. Based on Lyapunov stability theory and linear matrix inequality (LMI) method, sufficient conditions of the stochastic stability and output feedback controller design method for NCSs with random time delays and packet dropouts are presented. A numerical example is given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document