Compensation based on active power filters – The cost minimization

2015 ◽  
Vol 267 ◽  
pp. 648-654 ◽  
Author(s):  
Marcin Maciążek ◽  
Dariusz Grabowski ◽  
Marian Pasko ◽  
Michał Lewandowski
2016 ◽  
Vol 64 (1) ◽  
pp. 37-44 ◽  
Author(s):  
M. Maciążek ◽  
M. Pasko

Abstract Problems concerning electrical power quality and especially estimation of costs required for reduction of higher harmonics in power network voltage and current time waveforms have been considered in the paper. The application of active power filters to reduction of higher harmonics has been analysed taking into account, in particular, the necessary investment costs. Two goal functions have been used to solve the underlying optimization problem - the first one that enables direct cost minimization and the second one based on the cost-effectiveness approach used by economists. Such approach is substantially different from solutions proposed by other authors who concentrate rather on theoretical issues and do not take into consideration the economical market-based reality. In the paper, theoretical analysis has been followed by an example of optimal allocation of active power filters in a large supply system.


Author(s):  
Michal Lewandowski ◽  
Janusz Walczak

Purpose – In most applications the active power filters (APFs) are used to reduce harmonic distortion of a nonlinear load which is located near the APF installation point. This classic approach allows to reduce the distortion introduced to the power system but do not guarantee that the cost of the APFs installation is optimal. The purpose of this paper is to compare the classic approach to harmonic compensation with an optimization method of sizing and placement of the APFs in an existing distributed power network. Design/methodology/approach – An exemplary real-life power system with distributed nonlinear loads was modeled using PCFLO power analysis software. Next, Matlab was used to implement the classic method and the optimization algorithm. Between Matlab and PCFLO a specially written Java middleware was used to provide a seamless workflow integration. Findings – It was shown that the presented optimization method may lead to superior results in comparison with the classic approach. Simulation results clearly showed that the APFs installation cost can be significantly reduced when the optimization algorithm is used. Moreover, the proposed optimization method can overcome some problems connected with the nonlinearity and discontinuity of the APF's price/current function. Research limitations/implications – There are two main limitations of the presented method. First, the method needs much more computing power then the classic approach. Second, according to the authors’ knowledge, currently there are no commercially available APFs, which allow to directly apply the optimization method in industrial applications. Practical implications – The presented results showed that the approach, which is the most popular in the industry, is far from being optimal from the cost perspective. As it has been shown in the investigated example, it might be possible to significantly reduce the total cost of APFs installed in the power system. Originality/value – The optimization method presented in the paper as well as all simulation results are the original authors work. It was shown that the existing harmonic compensation strategies can be significantly upgraded and the proposed optimization method may be a basis and a reference point for future commercial solutions.


2018 ◽  
Vol 1 (1) ◽  
pp. 54-66
Author(s):  
Rakan Khalil Antar ◽  
Basil Mohammed Saied ◽  
Rafid Ahmed Khalil

A new control strategy for active power filters is proposed, modeled and implemented in order to improve the power quality of a line commutated converter High voltage DC link. The ability of reactive power and harmonics reductions are generally met by using passive and active power filters. In this paper, modified active power filter with a modified harmonics pulse width modulation algorithm is used to minimize the source harmonics and force the AC supply current to be in the same phase with AC voltage source at both sending and receiving sides of a line commutated converter high voltage DC link. Therefore, it is considered as power factor corrector and harmonics eliminator with random variations in the load current. The modified harmonics pulse width modulation algorithm is applicable for active power filter based on a three-phase five-level and seven-level cascaded H-bridge voltage source inverter. Simulation results show that the suggested modified multilevel active power filters improve total harmonics distortion of both voltage and current with almost unity effective power factor at both AC sides of high voltage DC link. Therefore, modified active power filter is an effective tool for power quality improvement and preferable for line commutated converter high voltage DC link at different load conditions.


Author(s):  
Ana-Maria Dumitrescu ◽  
Valeriu Bostan ◽  
Sanda Victorinne Paturca ◽  
Ionel Bostan ◽  
Razvan Matei Magureanu

2013 ◽  
Vol 811 ◽  
pp. 657-660 ◽  
Author(s):  
You Jie Ma ◽  
Hong De Yuan ◽  
Xue Song Zhou

With the wide application of power electronic equipments in power system, more and more harmonic are poured into the power system, which cause power pollution and make the power quality problem increasingly serious. Active power filter (APF) is an important equipment to compensate harmonic and reactive current in power system. One of the key technologies lies in the real-time and accurate control. The fundamental principles of several control strategies of compensate current were presented, and the respective merit and demerit of these control strategies were pointed out with contrast analysis in this paper. Active power filter will achieve a higher performance and a wider application with the continuous development of the control strategy.


Sign in / Sign up

Export Citation Format

Share Document