stationary frame
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 29)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
pp. 1-22
Author(s):  
Maarten Coëgnarts ◽  
Mario Slugan

Abstract This paper adopts an embodied cognitive perspective to review the significance of dynamic patterns in the visual expression of meaning. Drawing upon the work of Rudolf Arnheim we first show how perceptual dynamics of inanimate objects might be extended in order to structure abstract meaning in fixed images such as paintings. Second, we evaluate existing experimental work that shows how simple kinematic structures within a stationary frame might embody such high-level properties as perceptual causality and animacy. Third and last, we take inspiration from these experiments to shed light on the expressiveness of dynamic patterns that unfold once the frame itself becomes a mobile entity (i.e., camera movement). In the latter case we will also present a filmic case study, showing how filmmakers might resort to these dynamic patterns so as to embody a film’s story content, while simultaneously offering a further avenue for film scholars to deepen their engagement with the experimental method.


2021 ◽  
Author(s):  
Antonio Costanzo ◽  
Dario Valentini ◽  
Giovanni Pace ◽  
Ruzbeh Hadavandi ◽  
Lucio Torre ◽  
...  

Abstract The article illustrates the application of Bayesian estimation to the identification of flow instabilities, with special reference to rotating cavitation, in a three-bladed axial inducer using the unsteady pressure readings of a single transducer mounted on the casing just behind the leading edges of the impeller blades. The typical trapezoidal pressure distribution in the blade channels is parametrized and modulated in time and space for theoretically reproducing the expected pressure generated by known forms of cavitation instabilities (cavitation auto-oscillations, n-lobed rotating cavitation, higher-order surge/rotating cavitation modes). The Fourier spectra of the theoretical pressure so obtained in the rotating frame are transformed in the stationary frame, frequency broadened to better approximate the experimental results, and parametrically fitted by maximum likelihood estimation to the measured auto-correlation spectra. Each form of instability generates a characteristic distribution of sidebands in addition to its fundamental frequency. The identification makes use of this information for effective detection and characterization of multiple simultaneous flow instabilities with intensities spanning over about 20 dB down to about 4 dB signal-to-noise ratios. The same information also allows for effectively bypassing the aliasing limitations of traditional cross-correlation methods in the discrimination of multiple-lobed azimuthal instabilities from dual-sensor measurements on the same axial station of the machine. The method returns both the estimates of the model parameters and their standard deviations, providing the information needed for the assessment of the statistical significance of the results. The proposed approach represents therefore a promising tool for experimental research on flow instabilities in high-performance turbopumps.


2021 ◽  
Vol 9 (4) ◽  
pp. 18-29
Author(s):  
Anatolii Alpatov ◽  
Victor Kravets ◽  
Volodymyr Kravets ◽  
Erik Lapkhanov

The spiral-helix trajectory of the transport vehicle programmed motion in the form of a hodograph in the stationary frame of reference is considered. A relative frame of reference associated with the natural trihedral of the trajectory is introduced. The formulas of curvature and torsion of the trajectory, the unit vector of the natural trihedral, the components of the angular velocity of rotation of the natural trihedral in the proper axes and in the stationary frame of reference are set in the quaternionic matrices. The results are verified using the Frenet-Serret formulas. The mathematical apparatus of quaternion matrices is tested with the aim of adapting spatial, nonlinear problems of dynamic design of transport vehicles to a computational experiment.


Sign in / Sign up

Export Citation Format

Share Document