On the limit cycles of planar polynomial system with non-rational first integral via averaging method at any order

2015 ◽  
Vol 256 ◽  
pp. 876-880 ◽  
Author(s):  
Shimin Li ◽  
Yulin Zhao ◽  
Zhaohong Sun
2013 ◽  
Vol 23 (10) ◽  
pp. 1350172 ◽  
Author(s):  
WENTAO HUANG ◽  
AIYONG CHEN ◽  
QIUJIN XU

For a quartic polynomial system we investigate bifurcations of limit cycles and obtain conditions for the origin to be a center. Computing the singular point values we find also the conditions for the origin to be the eighth order fine focus. It is proven that the system can have eight small amplitude limit cycles in a neighborhood of the origin. To the best of our knowledge, this is the first example of a quartic system with eight limit cycles bifurcated from a fine focus. We also give the sufficient and necessary conditions for the origin to be an isochronous center.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Amar Makhlouf ◽  
Karthikeyan Rajagobal ◽  
Mohamed Abdalla

By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.


2006 ◽  
Vol 16 (02) ◽  
pp. 473-485 ◽  
Author(s):  
YIRONG LIU ◽  
WENTAO HUANG

In this paper, the problem of limit cycles bifurcated from the equator for a cubic polynomial system is investigated. The best result so far in the literature for this problem is six limit cycles. By using the method of singular point value, we prove that a cubic polynomial system can bifurcate seven limit cycles from the equator. We also find that a rational system has an isochronous center at the equator.


2008 ◽  
Vol 18 (07) ◽  
pp. 1939-1955 ◽  
Author(s):  
YUHAI WU ◽  
YONGXI GAO ◽  
MAOAN HAN

This paper is concerned with the number and distributions of limit cycles in a Z2-equivariant quintic planar vector field. By applying qualitative analysis method of differential equation, we find that 28 limit cycles with four different configurations appear in this special planar polynomial system. It is concluded that H(5) ≥ 28 = 52+ 3, where H(5) is the Hilbert number for quintic polynomial systems. The results obtained are useful to the study of the second part of 16th Hilbert problem.


Sign in / Sign up

Export Citation Format

Share Document