Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type

2016 ◽  
Vol 286 ◽  
pp. 201-212 ◽  
Author(s):  
Liang Lu ◽  
Zhenhai Liu ◽  
Maojun Bin
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. Mohan Raja ◽  
V. Vijayakumar ◽  
Le Nhat Huynh ◽  
R. Udhayakumar ◽  
Kottakkaran Sooppy Nisar

AbstractIn this paper, we investigate the approximate controllability of fractional evolution inclusions with hemivariational inequalities of order $1< r<2$ 1 < r < 2 . The main results of this paper are verified by using the fractional theories, multivalued analysis, cosine families, and fixed-point approach. At first, we discuss the existence of the mild solution for the class of fractional systems. After that, we establish the approximate controllability of linear and semilinear control systems. Finally, an application is presented to illustrate our theoretical results.


2019 ◽  
Vol 22 (4) ◽  
pp. 1086-1112 ◽  
Author(s):  
Linxin Shu ◽  
Xiao-Bao Shu ◽  
Jianzhong Mao

Abstract In this paper, we consider the existence of mild solutions and approximate controllability for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order 1 < α < 2. As far as we know, there are few articles investigating on this issue. Firstly, the mild solutions to the equations are proved using Laplace transform of the Riemann-Liouville derivative. Moreover, the estimations of resolve operators involving the Riemann-Liouville fractional derivative of order 1 < α < 2 are given. Then, the existence results are obtained via the noncompact measurement strategy and the Mönch fixed point theorem. The approximate controllability of this nonlinear Riemann-Liouville fractional nonlocal stochastic systems of order 1 < α < 2 is concerned under the assumption that the associated linear system is approximately controllable. Finally, the approximate controllability results are obtained by using Lebesgue dominated convergence theorem.


Sign in / Sign up

Export Citation Format

Share Document