Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems

2018 ◽  
Vol 333 ◽  
pp. 231-245 ◽  
Author(s):  
Higinio Ramos ◽  
M.A. Rufai
2019 ◽  
Vol 12 (3) ◽  
pp. 1199-1214
Author(s):  
Ra'ft Abdelrahim ◽  
Z. Omar ◽  
O. Ala’yed ◽  
B. Batiha

This paper deals with two-step hybrid block method with one generalized off-step points for solving second order initial value problem. In derivation of this method, power series of order nine are interpolated at the first two step points while its second and third derivatives are collocated at all point in the selected interval. The new developed method is employed to solve several problems of second order initial value problems. Convergence analysis of the new method alongside numerical procedure is established. The performance of the proposed method is found to be more accurate than existing method available in the literature when solving the same problems.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 713
Author(s):  
Higinio Ramos ◽  
Ridwanulahi Abdulganiy ◽  
Ruth Olowe ◽  
Samuel Jator

One of the well-known schemes for the direct numerical integration of second-order initial-value problems is due to Falkner (Falkner, 1936. Phil. Mag. S. 7, 621). This paper focuses on the construction of a family of adapted block Falkner methods which are frequency dependent for the direct numerical solution of second-order initial value problems with oscillatory solutions. The techniques of collocation and interpolation are adopted here to derive the new methods. The study of the properties of the proposed adapted block Falkner methods reveals that they are consistent and zero-stable, and thus, convergent. Furthermore, the stability analysis and the algebraic order conditions of the proposed methods are established. As may be seen from the numerical results, the resulting family is efficient and competitive compared to some recent methods in the literature.


Sign in / Sign up

Export Citation Format

Share Document