scholarly journals A moving-wall boundary layer flow of a slightly rarefied gas free stream over a moving flat plate

2005 ◽  
Vol 18 (5) ◽  
pp. 487-495 ◽  
Author(s):  
Tiegang Fang ◽  
Chia-fon F. Lee
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Norfifah Bachok ◽  
Anuar Ishak ◽  
Ioan Pop

The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.


1969 ◽  
Vol 35 (3) ◽  
pp. 439-450 ◽  
Author(s):  
J. H. Merkin

The boundary-layer flow over a semi-infinite vertical flat plate, heated to a constant temperature in a uniform free stream, is discussed in the two cases when the buoyancy forces aid and oppose the development of the boundary layer. In the former case, two series solutions are obtained, one of which is valid near the leading edge and the other is valid asymptotically. An accurate numerical method is used to describe the flow in the region where the series are not valid. In the latter case, a series, valid near the leading edge is obtained and it is extended by a numerical method to the point where the boundary layer is shown to separate.


2012 ◽  
Vol 39 (5) ◽  
pp. 438-447 ◽  
Author(s):  
Krishnendu Bhattacharyya ◽  
Gorachand C. Layek ◽  
Rama Subba Reddy Gorla

Author(s):  
J. A. D. Ackroyd

SummaryThe growth of the laminar compressible boundary layer on a moving flat wall is considered analytically for the case of zero velocity in the free stream outside the boundary layer. The results of this analysis are compared with other published results for the cases in which the free stream has some finite velocity. In all the cases considered in the present paper, the boundary layer is taken to originate at some stationary point on the moving wall. This type of boundary-layer flow occurs behind moving shock waves and it is argued that the case of particular interest in the present paper, that of the stationary gas outside the boundary layer, provides bounding values of such parameters as displacement and momentum thicknesses for shock-induced laminar boundary-layer flows.


Sign in / Sign up

Export Citation Format

Share Document