slip effect
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 77)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Mohammad Arif ◽  
Saurabh Kango ◽  
Dinesh Kumar Shukla

Abstract In the present study, the influence of various slip zone locations on the dynamic stability of finite hydrodynamic journal bearing lubricated with non-Newtonian and Newtonian lubricants has been investigated. Linearized equation of motion with free vibration of rigid rotor has been used to find the optimum location of the slip region with maximum stability margin limit. It has been observed that bearing with interface of slip and no-slip region near the upstream side of minimum film-thickness location is effective in improving the direct and cross stiffness coefficient, critical mass parameter, and critical whirling speed. The magnitude of dynamic performance parameters with slip effect is highly dependent on the rheology of lubricant. Shear-thinning lubricants combined with slip boundary condition shows higher dynamic stability as compared to the Newtonian lubricants under the conventional boundary condition. For all considered rheology of lubricants, the dynamic stability of bearing with slip effect is improving by increasing the eccentricity ratio.


Author(s):  
Azad Hussain ◽  
Mubashar Arshad ◽  
Ali Hassan ◽  
Aysha Rehman ◽  
Hijaz Ahmad ◽  
...  

Author(s):  
Konstantin Dobroselsky ◽  
Anatoliy Lebedev ◽  
Alexey Safonov ◽  
Sergey Starinskiy ◽  
Vladimir Dulin

The treatment of the hydrophobic properties of solid surfaces is considered as a passive method to reduce the drag in water flows (Rothstein, 2010) and to potentially affect the flow separation and vortex shedding (Sooraj et al., 2020). The manufacturing of surfaces with micro- and nano-scale roughness allows to extend the hydrophobicity towards superhydrophobicity with the contact angle close to 180°. In such conditions the solid surface is not wetted completely and the air-water interphase partially remains on the surface texture. This results in so-called flow slip effect. Therefore, a local phase transition during the flow cavitation or gas effervescence in near-wall low-pressure regions may additionally affect the slip effect for hydrophobic surfaces. The present work is focused on the comparison between cavitating and noncavitating flows around circular cylinders with lateral sectors with hydrophobic and non-hydrophobic coatings. The experiments are performed in a water tunnel, which consists of a water outgassing and cooling/heating section, honeycomb, contraction section, test section and diffuser. The water flow is driven by an electric pump, providing a bulk velocity up to 10 m/s in the transparent test section with 1 m length and 80×150 mm2 rectangular cross-section. The facility is equipped with an ultrasonic flowmeter, temperature and pressure sensors. Besides, the static pressure inside the water tunnel can be varied by using a special shaft section. The measurements are performed by using high-repetition and low-repetition PIV systems. The former is used for the analysis of large-scale flow dynamics in the wake region, whereas the latter one is used for high-resolution measurements in near-wall regions by using a long-distance microscope. The Reynolds number based on the bulk velocity of the flow, diameter of the cylinders (D = 26 mm) and kinematic viscosity of the water is varied up to 2×105..


Author(s):  
Zhenzhen Quan ◽  
Yao Zu ◽  
Yihan Wang ◽  
Mengjuan Zhou ◽  
Xiaohong Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document