scholarly journals Pitfalls in identity based encryption using an elliptic curve combined public key

2012 ◽  
Vol 25 (8) ◽  
pp. 1111-1113
Author(s):  
Xiangxue Li ◽  
Haifeng Qian ◽  
Yuan Zhou
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
ChunHua Cao ◽  
YaNa Tang ◽  
DeYan Huang ◽  
WeiMin Gan ◽  
Chunjiong Zhang

Wireless sensor networks (WSN) have problems such as limited power, weak computing power, poor communication ability, and vulnerability to attack. However, the existing encryption methods cannot effectively solve the above problems when applied to WSN. To this end, according to WSN’s characteristics and based on the identity-based encryption idea, an improved identity-based encryption algorithm (IIBE) is proposed, which can effectively simplify the key generation process, reduce the network traffic, and improve the network security. The design idea of this algorithm lies between the traditional public key encryption and identity-based public tweezers’ encryption. Compared with the traditional public key encryption, the algorithm does not need a public key certificate and avoids the management of the certificate. Compared with identity-based public key encryption, the algorithm addresses the key escrow and key revocation problems. The results of the actual network distribution experiments demonstrate that IIBE has low energy consumption and high security, which are suitable for application in WSN with high requirements on security.


In computer based system, key for the problem of identification, authentication and secrecy can be found in the field of cryptography. Dependence on public key infrastructure and to receive certificates signed by Certificate Authority (CA) to authenticate oneself for exchange of encrypted messages is one of the most significant limitation for the widespread adoption of Public Key Cryptography (PKC) as this process is time engrossing and error prone. Identity based cryptography (IBC) aspires to reduce the certificate and key management overhead of PKC. IBC’s important primordial is Identity-based Encryption (IBE). IBE provided emergent for perception of Identity based signature (IBS) schemes. In this paper, overview of IBE and IBS schemes has been given. Also, a survey on various IBE and IBS schemes has been performed to review different problems related to them. Finally, feasibility and applicability of IBC in current and future environments has been discussed.


2019 ◽  
Vol 30 (04) ◽  
pp. 647-664
Author(s):  
Libing Wu ◽  
Yubo Zhang ◽  
Kim-Kwang Raymond Choo ◽  
Debiao He

Online social networking applications have become more and more popular in the advance of the technological age. Much of our personal information has been disclosed in social networking activities and privacy-preserving still remains a research challenge in social network. Public key encryption scheme with equality test(PKEET), which is an extension of public key encryption with keyword search (PEKS), seems to be a solution. PKEET enables the tester to check whether two given ciphertexts are derived from the same plaintext. Recently, Zhu et al. proposed a pairing-free public key encryption scheme with equality test based on the traditional public key cryptosystem. However, it suffers from certificates management issue. In this paper, we propose a pairing-free identity-based encryption scheme with authorized equality test(PF-IBEAET). The PF-IBEAET scheme also provides fine-grained authorizations. We prove that the scheme is one way secure against chosen identity and chosen ciphertext attack (OW-ID-CCA) and indistinguishable against chosen-identity and chosen-ciphertext attack (IND-ID-CCA) in the random oracle model (ROM). Performance analysis shows that the scheme achieves a better performance than similar schemes.


Author(s):  
Kannan Balasubramanian ◽  
M. Rajakani

The concept of Identity Based Cryptography introduced the idea of using arbitrary strings such as e-mail addresses and IP Addresses to form public keys with the corresponding private keys being created by the Trusted Authority(TA) who is in possession of a system-wide master secret. Then a party, Alice who wants to send encrypted communication to Bob need only Bob's identifier and the system-wide public parameters. Thus the receiver is able to choose and manipulate the public key of the intended recipient which has a number of advantages. While IBC removes the problem of trust in the public key, it introduces trust in the TA. As the TA uses the system-wide master secret to compute private keys for users in the system, it can effectively recompute a private key for any arbitrary string without having to archive private keys. This greatly simplifies key management as the TA simply needs to protect its master secret.


Author(s):  
Kannan Balasubramanian ◽  
M. Rajakani

The concept of identity-based cryptography introduced the idea of using arbitrary strings such as e-mail addresses and IP addresses to form public keys with the corresponding private keys being created by the trusted authority (TA) who is in possession of a systemwide master secret. Then a party, Alice, who wants to send encrypted communication to Bob need only Bob's identifier and the systemwide public parameters. Thus, the receiver is able to choose and manipulate the public key of the intended recipient which has a number of advantages. While IBC removes the problem of trust in the public key, it introduces trust in the TA. As the TA uses the systemwide master secret to compute private keys for users in the system, it can effectively recompute a private key for any arbitrary string without having to archive private keys. This greatly simplifies key management as the TA simply needs to protect its master secret.


Sign in / Sign up

Export Citation Format

Share Document