A fast and efficient numerical algorithm for Swift–Hohenberg equation with a nonlocal nonlinearity

2021 ◽  
Vol 118 ◽  
pp. 107170
Author(s):  
Zhifeng Weng ◽  
Yangfang Deng ◽  
Qingqu Zhuang ◽  
Shuying Zhai
2003 ◽  
Vol 3 ◽  
pp. 52-59
Author(s):  
S.S. Komarov ◽  
N.Yu. Tsvileneva ◽  
N.I. Miskaktin

The main problems of the wave dynamics of flexible filaments and elastic membranes are solved. The reliability of the numerical algorithm proposed by the authors for calculating the elastic deformation of pneumatic structures under dynamic loading is confirmed when compared with the results of known studies obtained by analytical and numerical methods.


2021 ◽  
Vol 11 (10) ◽  
pp. 4420
Author(s):  
Panayotis Panayotaros

We study properties of an infinite system of discrete nonlinear Schrödinger equations that is equivalent to a coupled Schrödinger-elliptic differential equation with periodic coefficients. The differential equation was derived as a model for laser beam propagation in optical waveguide arrays in a nematic liquid crystal substrate and can be relevant to related systems with nonlocal nonlinearities. The infinite system is obtained by expanding the relevant physical quantities in a Wannier function basis associated to a periodic Schrödinger operator appearing in the problem. We show that the model can describe stable beams, and we estimate the optical power at different length scales. The main result of the paper is the Hamiltonian structure of the infinite system, assuming that the Wannier functions are real. We also give an explicit construction of real Wannier functions, and examine translation invariance properties of the linear part of the system in the Wannier basis.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohamed Abdelwahed ◽  
Nejmeddine Chorfi ◽  
Maatoug Hassine ◽  
Imen Kallel

AbstractThe topological sensitivity method is an optimization technique used in different inverse problem solutions. In this work, we adapt this method to the identification of plasma domain in a Tokamak. An asymptotic expansion of a considered shape function is established and used to solve this inverse problem. Finally, a numerical algorithm is developed and tested in different configurations.


2021 ◽  
Author(s):  
Almas Temirbekov ◽  
Dossan Baigereyev ◽  
Nurlan Temirbekov ◽  
Baidaulet Urmashev ◽  
Aidana Amantayeva

Sign in / Sign up

Export Citation Format

Share Document