Parallel CUDA implementation of a numerical algorithm for solving the Navier-Stokes equations using the pressure uniqueness condition

2021 ◽  
Author(s):  
Almas Temirbekov ◽  
Dossan Baigereyev ◽  
Nurlan Temirbekov ◽  
Baidaulet Urmashev ◽  
Aidana Amantayeva
2012 ◽  
Vol 2012 ◽  
pp. 1-14
Author(s):  
Jian Li ◽  
Xin Zhao ◽  
Jianhua Wu ◽  
Jianhong Yang

This paper proposes and analyzes a stabilized finite-volume method (FVM) for the three-dimensional stationary Navier-Stokes equations approximated by the lowest order finite element pairs. The method studies the new stabilized FVM with the relationship between the stabilized FEM (FEM) and the stabilized FVM under the assumption of the uniqueness condition. The results have three prominent features in this paper. Firstly, the error analysis shows that the stabilized FVM provides an approximate solution with the optimal convergence rate of the same order as the usual stabilized FEM solution solving the stationary Navier-Stokes equations. Secondly, superconvergence results on the solutions of the stabilized FEM and stabilized FVM are derived on theH1-norm and theL2-norm for the velocity and pressure. Thirdly, residual technique is applied to obtain theL2-norm error for the velocity without additional regular assumption on the exact solution.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 56-63
Author(s):  
W. Kyle Anderson ◽  
James C. Newman ◽  
David L. Whitfield ◽  
Eric J. Nielsen

Sign in / Sign up

Export Citation Format

Share Document