Uncommon isolation of Desulfovibrio vulgaris from a depressed fracture wound on the forehead

Anaerobe ◽  
2020 ◽  
Vol 65 ◽  
pp. 102264
Author(s):  
Akshatha R ◽  
Rakhi Biswas ◽  
Gopalakrishnan Madhavan Sasidharan ◽  
Sindhusuta Das
2019 ◽  
Vol 26 (2) ◽  
pp. 63-71
Author(s):  
Ling Leng ◽  
Ying Wang ◽  
Peixian Yang ◽  
Takashi Narihiro ◽  
Masaru Konishi Nobu ◽  
...  

Chain elongation of volatile fatty acids for medium chain fatty acids production (e.g. caproate) is an attractive approach to treat wastewater anaerobically and recover resource simultaneously. Undefined microbial consortia can be tailored to achieve chain elongation process with selective enrichment from anaerobic digestion sludge, which has advantages over pure culture approach for cost-efficient application. Whilst the metabolic pathway of the dominant caproate producer, Clostridium kluyveri, has been annotated, the role of other coexisting abundant microbiomes remained unclear. To this end, an ethanol-acetate fermentation inoculated with fresh digestion sludge at optimal conditions was conducted. Also, physiological study, thermodynamics and 16 S rRNA gene sequencing to elucidate the biological process by linking the system performance and dominant microbiomes were integrated. Results revealed a possible synergistic network in which C. kluyveri and three co-dominant species, Desulfovibrio vulgaris, Fusobacterium varium and Acetoanaerobium sticklandii coexisted. D. vulgaris and A. sticklandii (F. varium) were likely to boost the carboxylates chain elongation by stimulating ethanol oxidation and butyrate production through a syntrophic partnership with hydrogen (H2) serving as an electron messenger. This study unveils a synergistic microbial network to boost caproate production in mixed culture carboxylates chain elongation.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 383-390 ◽  
Author(s):  
J. E. Teer ◽  
D. J. Leak ◽  
A. W. L. Dudeney ◽  
A. Narayanan ◽  
D. C. Stuckey

The presence of small amounts of iron (>0.013% Fe) in sand creates problems in the manufacture of high quality glass. Removal by hot sulphuric acid is possible, but creates environmental problems, and is costly. Hence organic acids such as oxalic have been investigated since they are effective in removing iron, and can be degraded anaerobically. The aim of this work was to identify key intermediates in the anaerobic degradation of oxalate in an upflow anaerobic sludge blanket reactor (UASB) which was removing iron from solution in the sulphide form, and to determine the bacterial species involved. 2-bromoethanesulfonic acid (BES) and molybdenum were selected as suitable inhibitors for methanogenic and sulphate reducing bacteria (SRB) respectively. 40mM molybdenum was used to inhibit the SRB in a reactor with a 12hr HRT. Total SRB inhibition took place in 20 hrs, with a complete breakthrough of influent sulphate. The lack of an immediate oxalate breakthrough confirmed Desulfovibrio vulgaris subspecies oxamicus was not the predominant oxalate utilising species. Nevertheless, high concentrations of molybdenum were found to inhibit oxalate utilising bacteria in granular reactors but not in suspended population reactors; this observation was puzzling, and at present cannot be explained. Based on the intermediates identified, it was postulated that oxalate was degraded to formate by an oxalate utilising bacteria such as Oxalobacter formigenes, and the formate used by the SRBs to reduce sulphate. Acetate, as a minor intermediate, existed primarily as a source of cell carbon for oxalate utilising bacteria. Methanogenic inhibition identified that 62% of the CH4 in the reactor operated at 37°C originated from hydrogenotrophic methanogenesis, whilst this figure was 80% at 20°C. Possible irreversible effects were recorded with hydrogenotrophic methanogens.


Sign in / Sign up

Export Citation Format

Share Document