scholarly journals Nondivergence form quasilinear heat equations driven by space-time white noise

Author(s):  
Máté Gerencsér
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1251
Author(s):  
Wensheng Wang

We investigate spatial moduli of non-differentiability for the fourth-order linearized Kuramoto–Sivashinsky (L-KS) SPDEs and their gradient, driven by the space-time white noise in one-to-three dimensional spaces. We use the underlying explicit kernels and symmetry analysis, yielding spatial moduli of non-differentiability for L-KS SPDEs and their gradient. This work builds on the recent works on delicate analysis of regularities of general Gaussian processes and stochastic heat equation driven by space-time white noise. Moreover, it builds on and complements Allouba and Xiao’s earlier works on spatial uniform and local moduli of continuity of L-KS SPDEs and their gradient.


Author(s):  
Annie Millet ◽  
Svetlana Roudenko ◽  
Kai Yang

Abstract We study the focusing stochastic nonlinear Schrödinger equation in 1D in the $L^2$-critical and supercritical cases with an additive or multiplicative perturbation driven by space-time white noise. Unlike the deterministic case, the Hamiltonian (or energy) is not conserved in the stochastic setting nor is the mass (or the $L^2$-norm) conserved in the additive case. Therefore, we investigate the time evolution of these quantities. After that, we study the influence of noise on the global behaviour of solutions. In particular, we show that the noise may induce blow up, thus ceasing the global existence of the solution, which otherwise would be global in the deterministic setting. Furthermore, we study the effect of the noise on the blow-up dynamics in both multiplicative and additive noise settings and obtain profiles and rates of the blow-up solutions. Our findings conclude that the blow-up parameters (rate and profile) are insensitive to the type or strength of the noise: if blow up happens, it has the same dynamics as in the deterministic setting; however, there is a (random) shift of the blow-up centre, which can be described as a random variable normally distributed.


2001 ◽  
Vol 21 (12) ◽  
pp. 4408-4415 ◽  
Author(s):  
Rick L. Jenison ◽  
Jan W. H. Schnupp ◽  
Richard A. Reale ◽  
John F. Brugge

Author(s):  
Rongchan Zhu ◽  
Xiangchan Zhu

In this paper we study approximations to 3D Navier–Stokes (NS) equation driven by space-time white noise by paracontrolled distribution proposed in Ref. 13. A solution theory for this equation has been developed recently in Ref. 27 based on regularity structure theory and paracontrolled distribution. In order to make the approximating equation converge to 3D NS equation driven by space-time white noise, we should subtract some drift terms in approximating equations. These drift terms, which come from renormalizations in the solution theory, converge to the solution multiplied by some constant depending on approximations.


Sign in / Sign up

Export Citation Format

Share Document