fractional partial differential equation
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 32)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Fatma Al-Musalhi ◽  
Erkinjon Karimov

In this paper, we have considered two different sub-diffusion equations involving Hilfer, hyper-Bessel and Erdelyi-Kober fractional derivatives. Using a special transformation, we equivalently reduce the considered boundary value problems for fractional partial differential equation to the corresponding problem for ordinary differential equation. An essential role is played by certain properties of Erd\'elyi-Kober integral and differential operators. We have applied also successive iteration method to obtain self-similar solutions in an explicit form. The obtained self-similar solutions are represented by generalized Wright type function. We have to note that the usage of imposed conditions is important to present self-similar solutions via given data.


2021 ◽  
Vol 24 (5) ◽  
pp. 1559-1570
Author(s):  
Riccardo Droghei

Abstract In this paper we introduce a new multiple-parameters (multi-index) extension of the Wright function that arises from an eigenvalue problem for a case of hyper-Bessel operator involving Caputo fractional derivatives. We show that by giving particular values to the parameters involved in this special function, this leads to some known special functions (as the classical Wright function, the α-Mittag-Leffler function, the Tricomi function, etc.) that on their turn appear as cases of the so-called multi-index Mittag-Leffler functions. As an application, we mention that this new generalization Wright function nis an isochronous solution of a nonlinear fractional partial differential equation.


2021 ◽  
pp. 2327-2333
Author(s):  
Nabaa N. Hasan ◽  
Omar H. Salim

     The linear non-polynomial spline is used here to solve the fractional partial differential equation (FPDE). The fractional derivatives are described in the Caputo sense. The tensor products are given for extending the one-dimensional linear non-polynomial spline to a two-dimensional spline  to solve the heat equation. In this paper, the convergence theorem of the method used to the exact solution is proved and the numerical examples show the validity of the method. All computations are implemented by Mathcad15.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 851
Author(s):  
Robert Stegliński

In the present paper we give conditions under which there exists a unique weak solution for a nonlocal equation driven by the integrodifferential operator of fractional Laplacian type. We argue for the optimality of some assumptions. Some Lyapunov-type inequalities are given. We also study the continuous dependence of the solution on parameters. In proofs we use monotonicity and variational methods.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bander N. Almutairi ◽  
Ahmed E. Abouelregal ◽  
Bandar Bin-Mohsin ◽  
M. D. Alsulami ◽  
Phatiphat Thounthong

Fractional partial differential equation models are frequently used to several physical phenomena. Despite the ability to express many complex phenomena in different disciplines, researchers have found that multiterm time-fractional PDEs improve the modeling accuracy for describing diffusion processes in contrast to the results of a single term. Nowadays, it attracts the attention of the active researchers. The aim of this work is concerned with the approximate numerical solutions of the three-term time-fractional Sobolev model equation using computationally attractive and reliable technique, known as a local meshless method. Because of the meshless character and the simple application in higher dimensions, there is a growing interest in meshless techniques. To assess the reliability and accuracy of the proposed method, three test problems and two types of irregular domains are taken into account.


Sign in / Sign up

Export Citation Format

Share Document