Noise control of outdoor unit of split type air-conditioner using periodic scatterers made with array of Helmholtz resonators

2021 ◽  
Vol 179 ◽  
pp. 108054
Author(s):  
J. Dandsena ◽  
K. Mohapatra ◽  
A.K. Satapathy ◽  
D.P. Jena
Author(s):  
Deyu Li ◽  
Jeffrey S. Vipperman

Previous investigations have determined that the noise transmission into a finite cylindrical structure at low frequencies is dominated by the cavity resonances. Therefore, noise control at the first several cavity resonances for a Chamber Core cylinder can significantly reduce the noise level at low frequencies inside the cylinder. This work explores the feasibility of noise control for the Chamber Core cylinder using cylindrical Helmholtz resonators. The targeted frequencies are the first four cavity resonances. Detailed considerations of the resonant frequency calculation, resonator design, and experimental verification are presented. The effects on the noise reduction spectrum of two closely spaced resonators are experimentally studied. The optimal position of the resonators is also discussed. The noise control results indicate that the Helmholtz resonators can significantly attenuate the noise level at the targeted frequency bands.


2001 ◽  
Author(s):  
Stephen Horowitz ◽  
Toshikazu Nishida ◽  
Louis Cattafesta ◽  
Mark Sheplak

2013 ◽  
Author(s):  
Chintapalli V. Reddi ◽  
Chandramouli Padmanabhan

1997 ◽  
Vol 202 (1) ◽  
pp. 109-123 ◽  
Author(s):  
J.M. de Bedout ◽  
M.A. Franchek ◽  
R.J. Bernhard ◽  
L. Mongeau

2013 ◽  
Vol 133 (5) ◽  
pp. 3546-3546
Author(s):  
Ch. Surya Narayana V. Reddi ◽  
Chandramouli Padmanabhan

2021 ◽  
Author(s):  
◽  
Huy Nguyen

Acoustic metamaterials have been studied intensively recently since they can expose unnatural-born properties, potentially breaking the capacity limits of conventional acoustic materials. Since these interesting properties are mostly observed around metamaterials' local resonances/anti-resonance, resonance-based acoustic metamaterials are most popular in developing metamaterials. Employing resonance-based unnatural born properties such as effective negative mass density, effective negative bulk modulus, and acoustic hyper-damping on designing noise control solutions can give excellent devices showing such high performance that conventional acoustic material cannot achieve. This dissertation is an effort to employ acoustic metamaterials in designing efficient noise control. First, membrane-type acoustic metamaterials (MAM) will be employed to design a lightweight acoustic panel with high sound transmission loss (STL) in broadband at low frequencies. Negative density at around the anti-resonance of MAM gives it high capability on blocking sound. A double MAM-layer structure is proposed to double the STL performance of unit cells theoretically. Therein, simulation by using COMSOL Multiphysics is the main tool to optimize the unit cell design, panel structure, and effect of panel frame's vibration. Fabrication of the optimal design and experiments are also conducted to verify the calculation and simulation predictions. In addition to the acoustic panel, MAM is used to design a highly efficient acoustic energy harvester working at low frequencies. A magnet coin is deployed close to a magnet coil attached to the mass of MAM. The maximum oscillation of the coil due to MAM's first local resonance will induce a strong electric current inside the coil. Hence, energy can be harvested by an external resistor representing loads of harvesting devices. A complete theoretical model of the harvester is also developed in order to optimize its performance. Multiphysics simulation is conducted to verify the theoretical predictions. Besides MAM, Helmholtz has been used to design a high-performance and broadband acoustic silencer. Specifically, five slit-type Helmholtz resonators, which possess a massive viscous area, are packed together to create a single-layer silencer. In turn, two single-layer silencers are combined to form a double-layer silencer, which in theory double performance on noise blocking of the single-layer silencer. Theoretical models of slit-type Helmholtz resonators and silencers are developed completely and well validated with simulation and experimental results. Finally, Fano resonance resulting from the coupling between resonant and non-resonant channels will be explored and employed to design an ultra-broadband acoustic barrier with high ventilation. The resonant channel is generally represented a space-coiling channel, and the non-resonant channel represents ventilation or a straight and short channel. First, the formation of coupling Fano resonance will be theoretically addressed. Subsequently, acoustic hyper-damping is proposed by integrating thin acoustic foams into velocity anti-nodes in the resonant channel. In the end, an ultra-broadband acoustic barrier with high ventilation and STL is designed by employing three rows of hyper-dampened unit cells. Fabrication and experiment also are conducted to verify the simulation prediction.


2021 ◽  
Vol 263 (2) ◽  
pp. 3975-3986
Author(s):  
Tenon Charly Kone ◽  
Sebastian Ghinet ◽  
Raymond Panneton ◽  
Thomas Dupont ◽  
Anant Grewal

The noise control at multiple tonal frequencies simultaneously, in the low frequency range, is a challenge for aerospace, ground transportation and building industries. In the past few decades, various low frequency noise control solutions based on acoustic metamaterial designs have been presented in the literature. These solutions showed promising performance and are considered a better alternative to conventional sound insulation materials. In the present investigation, it was noticed that subdividing the cavity of a Helmholtz resonator allowed the control of multi-tonal noise at several resonance frequencies simultaneously and a shift of the resonance peaks towards the low frequencies. This paper proposes concepts of Helmholtz resonators with subdivided cavities to improve the sound transmission loss (STL) performance and simultaneously control the noise at several tonal frequencies. HRs with cylindrical shaped cavities were embedded in a layer of porous material. The STL of the metamaterial noise insulation configuration was predicted using serial and parallel assemblies of transfer matrices (TMM) incorporating a thermo-viscous-acoustic approach to accurately account for the viscous and thermal losses of acoustic wave propagation within the metamaterial. The STL calculated using the proposed TMM approach were observed to be in excellent agreement with the finite element method (FEM) numerical results.


2017 ◽  
Author(s):  
Brenno Victor Lima Campos ◽  
Audrey Babinet ◽  
José Maria Campos dos Santos

Sign in / Sign up

Export Citation Format

Share Document