Inversion of bottom parameters using a backscattering model based on the effective density fluid approximation

2021 ◽  
Vol 182 ◽  
pp. 108187
Author(s):  
Shengqi Yu ◽  
Baohua Liu ◽  
Kaiben Yu ◽  
Zhiguo Yang ◽  
Guangming Kan ◽  
...  
2019 ◽  
Vol 7 (10) ◽  
pp. 372
Author(s):  
Zou ◽  
Qi ◽  
Hou ◽  
Li ◽  
Yu ◽  
...  

The key to model-based Bayesian geoacoustic inversion is to solve the posterior probability distributions (PPDs) of parameters. In order to obtain PPDs more efficiently and accurately, the state-of-the-art Markov chain Monte Carlo (MCMC) method, multiple-try differential evolution adaptive Metropolis(ZS) (MT-DREAM(ZS)), is integrated to the inverse problem because of its excellent ability to fully explore the posterior space of parameters. The effective density fluid model (EDFM), which is derived from Biot–Stoll theory to approximate the poroelastic model, and the published field measurements of backscattering strength are adopted to implement the inversion. The results show that part of the parameters can be estimated close to the measured values, and the PPDs obtained by dual-frequency inversion are more concentrated than those of single-frequency inversion because of the use of more measured backscattering strength data. Otherwise, the comparison between the predicted backscattering strength of dual-frequency inversion results and Jackson’s prediction shows that the solutions of the inverse problem are not unique and may have multiple optimal values. Indeed, the difference between the two predictions is essentially the difference in the estimation of the contribution of volume scattering to the total scattering. Nevertheless, both results are reasonable due to the lack of measurement of volume scattering parameters, and the inversion results given by the posterior probabilities based on the limited measurements and the adopted model are still considered to be reliable.


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


Author(s):  
Charles Bouveyron ◽  
Gilles Celeux ◽  
T. Brendan Murphy ◽  
Adrian E. Raftery

Author(s):  
Jonathan Jacky ◽  
Margus Veanes ◽  
Colin Campbell ◽  
Wolfram Schulte
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document