neutron emission
Recently Published Documents


TOTAL DOCUMENTS

1001
(FIVE YEARS 104)

H-INDEX

47
(FIVE YEARS 2)

2022 ◽  
Vol 71 (1) ◽  
pp. 012501-012501
Author(s):  
Liu Chang-Qi ◽  
◽  
Huo Dong-Ying ◽  
Han Chao ◽  
Wu Kang ◽  
...  

2021 ◽  
Vol 62 (1) ◽  
pp. 016004
Author(s):  
S. Kamio ◽  
K. Saito ◽  
R. Seki ◽  
H. Kasahara ◽  
M. Kanda ◽  
...  

Abstract The characteristics of ion cyclotron range of frequencies (ICRF) minority ion heating with a hydrogen minority and deuterium majority plasma were studied by ICRF modulation injection experiments in the Large Helical Device (LHD). In recent experiments with deuterium plasma, no significant increase in the neutron emission rate due to ICRF second harmonic deuteron heating was observed. Therefore, in this study, the neutron emission rate was used to refer to the information regarding the thermal ion component. Like the results of the observations of the heating efficiencies at various minority proton ratios, the experimental results showed good agreement with the simple model simulation of ICRF wave absorption. During these experiments, the accelerated minority hydrogen ions were observed by neutral particle analyzers. The counting rates of the energetic particles were higher in the lines of sight passing through the helical ripple than across the magnetic axis, and the counting rate decreased as the minority hydrogen ion ratio increased. The dependence of the minority hydrogen ion ratio on the density of the energetic ions was consistent with the experimentally observed heating efficiencies and simulations. The heating efficiency of ICRF minority ion heating could be well explained by simple model simulation in the LHD deuterium experiment.


2021 ◽  
Vol 16 (12) ◽  
pp. C12019
Author(s):  
G. Marcer ◽  
M. Nocente ◽  
L. Giacomelli ◽  
G. Gorini ◽  
E. Perelli Cippo ◽  
...  

Abstract The fusion power produced in a DT thermonuclear reactor is currently determined by measuring the absolute 14 MeV neutron yield of the D(T, α)n fusion reaction. Measurements of 17 MeV gamma rays born from the much less probable D(T, 5He)γ reaction (branching ratio of ∼10−5) have been proposed as an alternative independent method to validate the neutron counting method and also to fulfill the requests of the nuclear regulator for licensing ITER DT operations. However, the development of absolute 17 MeV gamma ray emission measurements entails a number of requirements, such as: (i) knowledge of the 17 MeV gamma ray to 14 MeV neutron emission branching ratio; (ii) the simulation of the gamma ray transport from the extended plasma source to the gamma ray detectors; (iii) a careful determination of the absolute efficiency of previously calibrated gamma ray spectrometers. In this work, we have studied the possibility to infer the global gamma ray emission rate from measurements made with a 3″ × 6″ LaBr3 spectrometer installed at the end of a collimated tangential line of sight at the JET tokamak and using the neutron emission from deuterium plasmas of the most recent experimental campaigns. Results show that 17 MeV gamma ray fluxes at the end of this tangential line of sight have a weak dependence (less than 5%) on the plasma profile and can therefore be used to infer the total emission from the plasma.


2021 ◽  
Vol 16 (12) ◽  
pp. C12025
Author(s):  
S. Sangaroon ◽  
K. Ogawa ◽  
M. Isobe ◽  
M.I. Kobayashi ◽  
Y. Fujiwara ◽  
...  

Abstract Tangential compact neutron emission spectrometer (CNES) based on the Cs2LiYCl6:Ce with 7Li-enrichment (CLYC7) scintillator is newly installed in the Large Helical Device (LHD). Measurement of neutron energy spectrum was performed using CNES in tangential neutral beam (NB) heated deuterium plasma discharges. The Doppler shift of neutron energy according to the direction of tangential NB injection has been obtained. When the fast ions moving away from the CNES, lower shifted neutron energy is obtained, whereas the upper shifted neutron energy is obtained when the fast ions moving toward the CNES. The obtained neutron energy is almost consistent with the virgin deuterium-deuterium neutron energy evaluated by the simple two-body kinematic calculation.


2021 ◽  
Author(s):  
Junghee Kim ◽  
Jisung Kang ◽  
Tongnyeol Rhee ◽  
Jungmin Jo ◽  
Hyunsun Han ◽  
...  

Abstract Advanced operation scenarios such as high poloidal beta (βP) or high q min are promising concepts to achieve the steady-state high-performance fusion plasmas. However, those scenarios are prone to substantial Alfvénic activity, causing fast-ion transport and losses. Recent experiments with the advanced operation scenario on KSTAR tokamak have shown that the electron cyclotron current drive (ECCD) is able to mitigate and suppress the beam-ion driven toroidal Alfvén eigenmodes (TAEs) for over several tens of global energy confinement time. Co-current directional intermediate off-axis ECCD lowers the central safety factor slightly and tilts the central q-profile shape so that the continuum damping in the core region increases. Besides, the rise of central plasma pressure and increased thermal-ion Landau damping contribute to TAE stabilization. While the TAEs are suppressed, neutron emission rate and total stored energy increase by approximately 45% and 25%, respectively. Fast-ion transport estimated by TRANSP calculations approaches the classical level during the TAE suppression period. Substantial reduction in fast-ion loss and neutron deficit is also observed. Enhancement of fast-ion confinement by suppressing the TAEs leads to an increase of non-inductive current fraction and will benefit the sustainment of the long-pulse high-performance discharges.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012138
Author(s):  
S V Bakhlanov ◽  
A V Derbin ◽  
I S Drachnev ◽  
O I Konkov ◽  
I M Kotina ◽  
...  

Abstract The response function of the recoil nuclei in detectors designed for detection of neutrinos or dark matter particles can be determined only through usage of a neutron source with a known energy spectrum. A possible solution for a compact neutron calibration source is a combination of a 252Cf neutron source and a semiconductor detector that detects fission fragments, and thus records the neutron emission moment. This work is devoted to the degradation study of the operating parameters for silicon semiconductor detectors irradiated by fission fragments of the nuclide of 252 Cf. Two types of Si detectors were under investigations - silicon-lithium Si(Li) p-i-n detectors and silicon surface barrier detectors. As a result of the measurements, the maximum permissible radiation doses for the correct operation of both types of detectors and the relation of the received radiation dose to the spectroscopic characteristics of the detectors were determined.


2021 ◽  
Vol 28 (11) ◽  
pp. 112509
Author(s):  
James M. Mitrani ◽  
Joshua A. Brown ◽  
Bethany L. Goldblum ◽  
Thibault A. Laplace ◽  
Elliot L. Claveau ◽  
...  

2021 ◽  
Author(s):  
Žiga Štancar ◽  
Zamir Ghani ◽  
Jacob Eriksson ◽  
Andrej Zohar ◽  
Sean Conroy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document